Search results for "Complexity"

showing 10 items of 1094 documents

Tighter Relations Between Sensitivity and Other Complexity Measures

2014

Sensitivity conjecture is a longstanding and fundamental open problem in the area of complexity measures of Boolean functions and decision tree complexity. The conjecture postulates that the maximum sensitivity of a Boolean function is polynomially related to other major complexity measures. Despite much attention to the problem and major advances in analysis of Boolean functions in the past decade, the problem remains wide open with no positive result toward the conjecture since the work of Kenyon and Kutin from 2004. In this work, we present new upper bounds for various complexity measures in terms of sensitivity improving the bounds provided by Kenyon and Kutin. Specifically, we show tha…

FOS: Computer and information sciencesComputer Science - Computational ComplexityComputational Complexity (cs.CC)
researchProduct

Size of Sets with Small Sensitivity: a Generalization of Simon's Lemma

2014

We study the structure of sets $S\subseteq\{0, 1\}^n$ with small sensitivity. The well-known Simon's lemma says that any $S\subseteq\{0, 1\}^n$ of sensitivity $s$ must be of size at least $2^{n-s}$. This result has been useful for proving lower bounds on sensitivity of Boolean functions, with applications to the theory of parallel computing and the "sensitivity vs. block sensitivity" conjecture. In this paper, we take a deeper look at the size of such sets and their structure. We show an unexpected "gap theorem": if $S\subseteq\{0, 1\}^n$ has sensitivity $s$, then we either have $|S|=2^{n-s}$ or $|S|\geq \frac{3}{2} 2^{n-s}$. This is shown via classifying such sets into sets that can be con…

FOS: Computer and information sciencesComputer Science - Computational ComplexityComputational Complexity (cs.CC)
researchProduct

Fast Matrix Multiplication: Limitations of the Laser Method

2014

Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time $O(n^{2.3755})$. Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le Gall has led to an improved algorithm running in time $O(n^{2.3729})$. These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd. We show that this exact approach cannot result in an algorithm with running time $O(n^{2.3725})$, and identify a wide class of variants of this approach which cannot result in an algorithm with running time $O(n^{2.3078})$; in particular, this approach cannot prove the conjecture that f…

FOS: Computer and information sciencesComputer Science - Computational ComplexityComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)
researchProduct

Alternating, private alternating, and quantum alternating realtime automata

2014

We present new results on realtime alternating, private alternating, and quantum alternating automaton models. Firstly, we show that the emptiness problem for alternating one-counter automata on unary alphabets is undecidable. Then, we present two equivalent definitions of realtime private alternating finite automata (PAFAs). We show that the emptiness problem is undecidable for PAFAs. Furthermore, PAFAs can recognize some nonregular unary languages, including the unary squares language, which seems to be difficult even for some classical counter automata with two-way input. Regarding quantum finite automata (QFAs), we show that the emptiness problem is undecidable both for universal QFAs o…

FOS: Computer and information sciencesComputer Science - Computational ComplexityComputer Science - Logic in Computer ScienceQuantum PhysicsFormal Languages and Automata Theory (cs.FL)Computer Science::Logic in Computer ScienceFOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputer Science::Computational ComplexityComputational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryLogic in Computer Science (cs.LO)
researchProduct

Probabilistic verification of all languages

2018

We present three protocols for verifying all languages: (i) For any unary (binary) language, there is a log-space (linear-space) interactive proof system (IPS); (ii) for any language, there is a constant-space weak-IPS (the non-members may not be rejected with high probability); and, (iii) for any language, there is a constant-space IPS with two provers where the verifier reads the input once. Additionally, we show that uncountably many binary (unary) languages can be verified in constant space and in linear (quadratic) expected time.

FOS: Computer and information sciencesComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)
researchProduct

Inkdots as advice for finite automata

2015

We examine inkdots placed on the input string as a way of providing advice to finite automata, and establish the relations between this model and the previously studied models of advised finite automata. The existence of an infinite hierarchy of classes of languages that can be recognized with the help of increasing numbers of inkdots as advice is shown. The effects of different forms of advice on the succinctness of the advised machines are examined. We also study randomly placed inkdots as advice to probabilistic finite automata, and demonstrate the superiority of this model over its deterministic version. Even very slowly growing amounts of space can become a resource of meaningful use i…

FOS: Computer and information sciencesComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)
researchProduct

Uncountable realtime probabilistic classes

2017

We investigate the minimum cases for realtime probabilistic machines that can define uncountably many languages with bounded error. We show that logarithmic space is enough for realtime PTMs on unary languages. On binary case, we follow the same result for double logarithmic space, which is tight. When replacing the worktape with some limited memories, we can follow uncountable results on unary languages for two counters.

FOS: Computer and information sciencesComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputerApplications_COMPUTERSINOTHERSYSTEMSComputational Complexity (cs.CC)
researchProduct

Efficient Quantum Algorithms for (Gapped) Group Testing and Junta Testing

2015

In the k-junta testing problem, a tester has to efficiently decide whether a given function f: {0, 1}n → {0, 1} is a k-junta (i.e., depends on at most fc of its input bits) or is ε-far from any k-junta. Our main result is a quantum algorithm for this problem with query complexity Õ([EQUATION]) and time complexity Õ(n[EQUATION]). This quadratically improves over the query complexity of the previous best quantum junta tester, due to Atıcı and Servedio. Our tester is based on a new quantum algorithm for a gapped version of the combinatorial group testing problem, with an up to quartic improvement over the query complexity of the best classical algorithm. For our upper bound on the time complex…

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum Physics0103 physical sciencesFOS: Physical sciences010307 mathematical physicsComputational Complexity (cs.CC)Computer Science::Computational ComplexityQuantum Physics (quant-ph)010306 general physics01 natural sciences
researchProduct

Quantum versus Classical Online Streaming Algorithms with Advice

2018

We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory, even if classical online algorithms get advice bits. Furthermore, we show that a quantum online algorithm with a constant number of qubits can be better than any deterministic online algorithm with a constant number of advice bits and unlimited computational power.

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct

Width Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams with Repeated Test

2017

We consider quantum, nondterministic and probabilistic versions of known computational model Ordered Read-$k$-times Branching Programs or Ordered Binary Decision Diagrams with repeated test ($k$-QOBDD, $k$-NOBDD and $k$-POBDD). We show width hierarchy for complexity classes of Boolean function computed by these models and discuss relation between different variants of $k$-OBDD.

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct