Search results for "Computational Mathematic"

showing 10 items of 987 documents

Chebyshev’s Method on Projective Fluids

2020

We demonstrate the acceleration potential of the Chebyshev semi-iterative approach for fluid simulations in Projective Dynamics. The Chebyshev approach has been successfully tested for deformable bodies, where the dynamical system behaves relatively linearly, even though Projective Dynamics, in general, is fundamentally nonlinear. The results for more complex constraints, like fluids, with a particular nonlinear dynamical system, remained unknown so far. We follow a method describing particle-based fluids in Projective Dynamics while replacing the Conjugate Gradient solver with Chebyshev’s method. Our results show that Chebyshev’s method can be successfully applied to fluids and potentially…

Conjugate gradient solverComputer sciencesimulace tekutinanimationAcceleration (differential geometry)02 engineering and technologyDynamical systemChebyshev filternonlinear optimization0202 electrical engineering electronic engineering information engineeringanimaceProjective testnelineární optimalizaceprojektivní dynamikaconstraint-based simulationsimulace založená na omezeníMathematical analysis020207 software engineeringComputer Graphics and Computer-Aided DesignComputational MathematicsNonlinear systemprojective dynamicsParticle020201 artificial intelligence & image processingfluid simulationProjective dynamicsSoftware
researchProduct

Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound

2012

We consider 3-point numerical schemes, that resolve scalar conservation laws, that are oscillatory either to their dispersive or anti-diffusive nature. The spatial discretization is performed over non-uniform adaptively redefined meshes. We provide a model for studying the evolution of the extremes of the oscillations. We prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We, moreover, prove under more strict assumptions that the increase of the TV, due to the oscillatory behavior of the numerical schemes, decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI…

Conservation lawAlgebra and Number TheoryDiscretizationApplied MathematicsScalar (mathematics)Time evolutionRegular polygonTopologyComputational Mathematicssymbols.namesakeRiemann problemMathematics Subject ClassificationsymbolsApplied mathematicsPolygon meshMathematicsMathematics of Computation
researchProduct

Conservation Laws and Asymptotic Behavior of a Model of Social Dynamics

2008

Abstract A conservative social dynamics model is developed within a discrete kinetic framework for active particles, which has been proposed in [M.L. Bertotti, L. Delitala, From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences, Math. Mod. Meth. Appl. Sci. 14 (2004) 1061–1084]. The model concerns a society in which individuals, distinguished by a scalar variable (the activity) which expresses their social state, undergo competitive and/or cooperative interactions. The evolution of the discrete probability distribution over the social state is described by a system of nonlinear ordinary differential equations. The asymptotic trend of their solutions…

Conservation lawDiscretizationApplied MathematicsMathematical analysisStochastic gameGeneral EngineeringGeneral MedicineStability (probability)Computational MathematicsNonlinear systemSocial dynamicsExponential stabilityApplied mathematicsProbability distributionGeneral Economics Econometrics and FinanceAnalysisMathematics
researchProduct

High Order Extrapolation Techniques for WENO Finite-Difference Schemes Applied to NACA Airfoil Profiles

2017

Finite-difference WENO schemes are capable of approximating accurately and efficiently weak solutions of hyperbolic conservation laws. In this context high order numerical boundary conditions have been proven to increase significantly the resolution of the numerical solutions. In this paper a finite-difference WENO scheme is combined with a high order boundary extrapolation technique at ghost cells to solve problems involving NACA airfoil profiles. The results obtained are comparable with those obtained through other techniques involving unstructured meshes.

Conservation lawExtrapolationFinite differenceBoundary (topology)Context (language use)010103 numerical & computational mathematics01 natural sciencesNACA airfoil010101 applied mathematicsApplied mathematicsPolygon meshBoundary value problem0101 mathematicsMathematics
researchProduct

Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws

2017

Abstract The Lax–Wendroff time discretization is an alternative method to the popular total variation diminishing Runge–Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and efficient than RKDG methods of comparable order of accuracy, the formulation of LWDG methods involves the successive computation of exact flux derivatives. This procedure allows one to construct schemes of arbitrary formal order of accuracy in space and time. A new approximation procedure avoids the computation of ex…

Conservation lawLax–Wendroff theoremDiscretizationLax–Wendroff methodMathematical analysisOrder of accuracyCPU time010103 numerical & computational mathematics01 natural sciences010101 applied mathematicsComputational MathematicsComputational Theory and MathematicsDiscontinuous Galerkin methodModeling and SimulationTotal variation diminishing0101 mathematicsMathematicsComputers & Mathematics with Applications
researchProduct

Riemann solvers in relativistic astrophysics

1999

AbstractOur contribution reviews High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. One objective of our contribution is to show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. We will review recent literature concerning the main properties of different special relativistic Riemann solvers, and disc…

Conservation lawPartial differential equationApplied MathematicsRiemann solverLorentz factorsymbols.namesakeTheoretical physicsRiemann hypothesisComputational MathematicsRiemann problemFlow (mathematics)Shock capturing methodsymbolsMathematicsMathematical physicsJournal of Computational and Applied Mathematics
researchProduct

A new approximation procedure for fractals

2003

AbstractThis paper is based upon Hutchinson's theory of generating fractals as fixed points of a finite set of contractions, when considering this finite set of contractions as a contractive set-valued map.We approximate the fractal using some preselected parameters and we obtain formulae describing the “distance” between the “exact fractal” and the “approximate fractal” in terms of the preselected parameters. Some examples and also computation programs are given, showing how our procedure works.

ContractionComputationNumerical analysisApplied MathematicsMathematical analysisAttractorHausdorff–Pompeiu distanceFixed pointFixed pointComputational MathematicsFractalNumerical approximationAttractorApproximation procedureFractalFinite setMathematicsJournal of Computational and Applied Mathematics
researchProduct

A product space reformulation with reduced dimension for splitting algorithms

2021

AbstractIn this paper we propose a product space reformulation to transform monotone inclusions described by finitely many operators on a Hilbert space into equivalent two-operator problems. Our approach relies on Pierra’s classical reformulation with a different decomposition, which results in a reduction of the dimension of the outcoming product Hilbert space. We discuss the case of not necessarily convex feasibility and best approximation problems. By applying existing splitting methods to the proposed reformulation we obtain new parallel variants of them with a reduction in the number of variables. The convergence of the new algorithms is straightforwardly derived with no further assump…

Control and OptimizationApplied Mathematicsdouglas – rachford algorithm47H05 47J25 49M27 65K10 90C30UNESCO::CIENCIAS TECNOLÓGICASComputational MathematicsOptimization and Control (math.OC)splitting algorithmprojection methodsFOS: Mathematicspierra’s product space reformulationmonotone inclusionsMathematics - Optimization and Controlfeasibility problemComputational Optimization and Applications
researchProduct

Resonance of minimizers forn-level quantum systems with an arbitrary cost

2004

We consider an optimal control problem describing a laser-induced population transfer on a n-level quantum system. For a convex cost depending only on the moduli of controls ( i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for n=2 and n=3): instead of looking for minimizers on the sphere one is reduced to look just for minimizers on the sphere . Moreover, for the reduced problem, we investigate on the question of existence of strict abnormal mi…

Control and OptimizationMathematical analysisRegular polygonOptimal controlResonance (particle physics)ModuliPontryagin's minimum principleComputational MathematicsControl and Systems EngineeringQuantum systemRotating wave approximationApplied mathematicsQuantumMathematicsESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Symmetry breaking in a constrained cheeger type isoperimetric inequality

2015

We study the optimal constant in a Sobolev inequality for BV functions with zero mean value and vanishing outside a bounded open set. We are interested in finding the best possible embedding constant in terms of the measure of the domain alone. We set up an optimal shape problem and we completely characterize the behavior of optimal domains.

Control and OptimizationOptimal shapeZero (complex analysis)Symmetry and asymmetryMeasure (mathematics)Sobolev inequalityCheeger inequalityCombinatoricsComputational MathematicsMathematics - Analysis of PDEsOptimization and Control (math.OC)Control and Systems EngineeringSettore MAT/05 - Analisi MatematicaFOS: MathematicsExponentSymmetry breakingIsoperimetric inequalitySymmetry (geometry)Constant (mathematics)Mathematics - Optimization and ControlAnalysis of PDEs (math.AP)Mathematics
researchProduct