Search results for "Computational Mathematic"

showing 10 items of 987 documents

Cluster sets and quasiconformal mappings

2010

Certain classical results on cluster sets and boundary cluster sets of analytic functions, due to Iversen, Lindelof, Noshiro, Tsuji, Ohtsuka, Pommerenke, Carmona, Cufi and others, are extended to n-dimensional quasiconformal mappings. Unlike what is usually the case in the context of analytic functions, our considerations are not restricted to mappings of a disk or ball only. It is shown, for instance, that quasiconformal cluster sets and boundary cluster sets, taken at a non-isolated boundary point of an arbitrary domain, coincide. More refined versions are established in the special case where the domain is the open unit ball. These include cluster set considerations of the induced radial…

Discrete mathematicsComputational MathematicsNumerical AnalysisOpen unitApplied MathematicsBoundary (topology)Ball (mathematics)Boundary extensionSpecial caseAnalysisAnalytic functionMathematicsComplex Variables and Elliptic Equations
researchProduct

Stancu–Schurer–Kantorovich operators based on q-integers

2015

The goal of this paper is to introduce and study q analogue of Stancu-Schurer-Kantorovich operators. A convergence theorem using the well known Bohman-Korovkin criterion is proven and the rate of convergence involving the modulus of continuity is established. The estimate of the rate of convergence by means of the Lipshitz function is considered. Furthermore, we obtained a Voronovskaja type result for these operators. Also, we investigate the statistical approximation properties of these operators using Korovkin type statistical approximation theorem.

Discrete mathematicsComputational MathematicsRate of convergenceStatistical approximationApplied MathematicsConvergence (routing)Applied mathematicsFunction (mathematics)Type (model theory)Operator theoryModulus of continuityMathematicsApplied Mathematics and Computation
researchProduct

About Graph Complements

2020

Summary This article formalizes different variants of the complement graph in the Mizar system [3], based on the formalization of graphs in [6].

Discrete mathematicsComputational Mathematicsgraph complementApplied MathematicsQA1-93905c76Graph (abstract data type)loop68v20MathematicsComplement graphMathematicsofComputing_DISCRETEMATHEMATICSMathematicsFormalized Mathematics
researchProduct

NP-completeness of the hamming salesman problem

1985

It is shown that the traveling salesman problem, where cities are bit strings with Hamming distances, is NP-complete.

Discrete mathematicsComputer Networks and CommunicationsApplied MathematicsComputer Science::Neural and Evolutionary ComputationHamming distanceComputer Science::Computational ComplexityTravelling salesman problemCombinatoricsHigh Energy Physics::TheoryComputational MathematicsCompleteness (order theory)Computer Science::Data Structures and AlgorithmsNP-completeBottleneck traveling salesman problemHamming codeSoftwareComputer Science::Information TheoryMathematicsBIT
researchProduct

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

2007

The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…

Discrete mathematicsDegree (graph theory)ComputationDegenerate energy levelsACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms020207 software engineering010103 numerical & computational mathematics02 engineering and technology[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.3: EfficiencyCombinatoricsIntersection0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Adjacency listGravitational singularity0101 mathematicsAlgebraic numberACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.0: Algorithm design and analysisMathematics
researchProduct

Refined Finiteness and Degree Properties in Graphs

2020

Summary In this article the finiteness of graphs is refined and the minimal and maximal degree of graphs are formalized in the Mizar system [3], based on the formalization of graphs in [4].

Discrete mathematicsDegree (graph theory)maximum degreeApplied Mathematicsgraph theory68v20vertex degree05c07Computational MathematicsQA1-939MathematicsMathematicsMathematicsofComputing_DISCRETEMATHEMATICSminimum degreeFormalized Mathematics
researchProduct

Representation and factorization theorems for almost-Lp-spaces

2019

The first and fourth authors gratefully acknowledge the support of Ministerio de Ciencia, Innovacibn y Universidades (Spain), Agencia Estatal de Investigaciones, and FEDER, under projects MTM2014-53009-P (J.M. Calabuig) and MTM2016-77054-C2-1-P (E.A. Sanchez Perez).

Discrete mathematicsFactorizationGeneral MathematicsBanach lattice010102 general mathematicsRepresentation (systemics)010103 numerical & computational mathematics0101 mathematics01 natural sciencesMathematicsIndagationes Mathematicae
researchProduct

Locality of order-invariant first-order formulas

2000

A query is local if the decision of whether a tuple in a structure satisfies this query only depends on a small neighborhood of the tuple. We prove that all queries expressible by order-invariant first-order formulas are local.

Discrete mathematicsGeneral Computer ScienceLogicLocalityStructure (category theory)InformationSystems_DATABASEMANAGEMENTFirst orderTheoretical Computer ScienceFirst-order logicCombinatoricsComputational MathematicsOrder (group theory)TupleInvariant (mathematics)MathematicsACM Transactions on Computational Logic
researchProduct

INCIDENCE CONSTRAINTS: A COMBINATORIAL APPROACH

2006

The simplest geometric constraints are incidences between points and lines in the projective plane. This problem is universal, in the sense that all algebraic systems reduce to such geometric constraints. Detecting incidence dependences between these geometric constraints is NP-complete. New methods to prove incidence theorems are proposed, which use strictly no computer algebra but only combinatorial arguments.

Discrete mathematicsIncidence geometryApplied MathematicsCombinatorial proofSymbolic computationTheoretical Computer ScienceAlgebraComputational MathematicsComputational Theory and MathematicsGeometry and TopologyProjective planeAlgebraic numberIncidence (geometry)MathematicsProjective geometryInternational Journal of Computational Geometry & Applications
researchProduct

On the structure of the ultradistributions of Beurling type

2008

Let O be a nonempty open set of the k-dimensional euclidean space Rk. In this paper, we give a structure theorem on the ultradistributions of Beurling type in O. Also, other structure results on certain ultradistributions are obtained, in terms of complex Borel measures in O.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsAlgebra and Number TheoryEuclidean spaceRiesz–Markov–Kakutani representation theoremApplied MathematicsOpen setStructure (category theory)Banach spaceType (model theory)Computational MathematicsLocally convex topological vector spaceGeometry and TopologyAnalysisStructured program theoremMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct