Search results for "Computational Mathematic"
showing 10 items of 987 documents
Cluster sets and quasiconformal mappings
2010
Certain classical results on cluster sets and boundary cluster sets of analytic functions, due to Iversen, Lindelof, Noshiro, Tsuji, Ohtsuka, Pommerenke, Carmona, Cufi and others, are extended to n-dimensional quasiconformal mappings. Unlike what is usually the case in the context of analytic functions, our considerations are not restricted to mappings of a disk or ball only. It is shown, for instance, that quasiconformal cluster sets and boundary cluster sets, taken at a non-isolated boundary point of an arbitrary domain, coincide. More refined versions are established in the special case where the domain is the open unit ball. These include cluster set considerations of the induced radial…
Stancu–Schurer–Kantorovich operators based on q-integers
2015
The goal of this paper is to introduce and study q analogue of Stancu-Schurer-Kantorovich operators. A convergence theorem using the well known Bohman-Korovkin criterion is proven and the rate of convergence involving the modulus of continuity is established. The estimate of the rate of convergence by means of the Lipshitz function is considered. Furthermore, we obtained a Voronovskaja type result for these operators. Also, we investigate the statistical approximation properties of these operators using Korovkin type statistical approximation theorem.
About Graph Complements
2020
Summary This article formalizes different variants of the complement graph in the Mizar system [3], based on the formalization of graphs in [6].
NP-completeness of the hamming salesman problem
1985
It is shown that the traveling salesman problem, where cities are bit strings with Hamming distances, is NP-complete.
Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics
2007
The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…
Refined Finiteness and Degree Properties in Graphs
2020
Summary In this article the finiteness of graphs is refined and the minimal and maximal degree of graphs are formalized in the Mizar system [3], based on the formalization of graphs in [4].
Representation and factorization theorems for almost-Lp-spaces
2019
The first and fourth authors gratefully acknowledge the support of Ministerio de Ciencia, Innovacibn y Universidades (Spain), Agencia Estatal de Investigaciones, and FEDER, under projects MTM2014-53009-P (J.M. Calabuig) and MTM2016-77054-C2-1-P (E.A. Sanchez Perez).
Locality of order-invariant first-order formulas
2000
A query is local if the decision of whether a tuple in a structure satisfies this query only depends on a small neighborhood of the tuple. We prove that all queries expressible by order-invariant first-order formulas are local.
INCIDENCE CONSTRAINTS: A COMBINATORIAL APPROACH
2006
The simplest geometric constraints are incidences between points and lines in the projective plane. This problem is universal, in the sense that all algebraic systems reduce to such geometric constraints. Detecting incidence dependences between these geometric constraints is NP-complete. New methods to prove incidence theorems are proposed, which use strictly no computer algebra but only combinatorial arguments.
On the structure of the ultradistributions of Beurling type
2008
Let O be a nonempty open set of the k-dimensional euclidean space Rk. In this paper, we give a structure theorem on the ultradistributions of Beurling type in O. Also, other structure results on certain ultradistributions are obtained, in terms of complex Borel measures in O.