Search results for "Computational Science"
showing 10 items of 124 documents
geomIO: An Open‐Source MATLAB Toolbox to Create the Initial Configuration of 2‐D/3‐D Thermo‐Mechanical Simulations From 2‐D Vector Drawings
2019
Creating the initial geometry and temperature configuration of 3D numerical simulations is a challenging task. Professional tools are expensive. They often have a steep learning curve and do mostly not interface with the numerical simulation software used by the geodynamics and tectonics academic community. There, we developed geomIO (geometry Input/Output), a MATLAB toolbox to create the initial configuration of geological models regarding model geometry and temperature structure. geomIO allows users to create a geo-referenced 3D volume by drawing multiple 2D cross-sections in a standard vector graphics editor. The volume is then used to assign material properties and set up initial temper…
Interactive Terrain Simulation and Force Distribution Models in Sand Piles
2006
This paper presents an application of Cellular Automata in the field of dry Granular Systems modelling While the study of granular systems is not a recent field, no efficient models exist, from a computational point of view, in classical methodologies Some previous works showed that the use of Cellular Automata is suitable for the development of models that can be used in real time applications This paper extends the existing Cellular Automata models in order to make them interactive A model for the reaction to external forces and a pressure distribution model are presented and analyzed, with numerical examples and simulations.
Advances in automated diffraction tomography
2009
Crystal structure solution by means of electron diffraction or investigation of special structural features needs high quality data acquisition followed by data processing which delivers cell parameters, space group and in the end a 3D data set. The final step is the structure analysis itself including structure solution and subsequent refinement.
The on-line coupled atmospheric chemistry model system MECO(n) – Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange includin…
2018
Abstract. As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme mul…
Alg: a Toolbox for the Generation of Look-Up tables Based on Atmospheric Radiative Transfer Models
2018
Atmospheric radiative transfer models (RTMs) are software tools describing the radiation processes occurring on the Earth’s atmosphere. While the evolution of these tools have achieved better representations of the light-atmosphere interactions, the increase of complexity, interpretability and computation time bears implications towards practical applications in Earth observation. Despite of existing RTM-specific graphical user interfaces, none of these tools allow common streamlining model setup for a wide variety of atmospheric RTMs. In addition, the automatic generation of atmospheric look-up tables (LUTs) can hardly be done with the use of these graphical tools. This paper presents the …
A Geant4 simulation package for the sage spectrometer
2012
International audience; A comprehensive Geant4 simulation was built for the SAGE spectrometer. The simulation package includes the silicon and germanium detectors, the mechanical structure and the electromagnetic fields present in SAGE. This simulation can be used for making predictions through simulating experiments and for comparing simulated and experimental data to better understand the underlying physics.
A commercial EM solver using the BI-RME method
2014
Array programming with NumPy.
2020
Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programmi…
A novel approach to integration by parts reduction
2015
Integration by parts reduction is a standard component of most modern multi-loop calculations in quantum field theory. We present a novel strategy constructed to overcome the limitations of currently available reduction programs based on Laporta's algorithm. The key idea is to construct algebraic identities from numerical samples obtained from reductions over finite fields. We expect the method to be highly amenable to parallelization, show a low memory footprint during the reduction step, and allow for significantly better run-times.
Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model
2010
A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…