Search results for "Computational Science"
showing 10 items of 124 documents
Lattice quantum hadrodynamics on a CRAY Y-MP
1992
Quantum corrections to the mean-field equation of state for nuclear matter are estimated in a lattice simulation of quantum hadrodynamics on a CRAY Y-MP. In contrast with lattice quantum chromodynamics, where coordinate space methods are the standard, the calculations are carried out in momentum space and on nonhypercubic (irregular) lattices. The quantum corrections to the known, mean-field equation of state were found to be considerable. The time frame of the project and the large computational needs of the program required the use of powerful supercomputers, like the CRAY Y-MP, which are capable of performing at a very high computing speed by using both vector and parallel hardware, the …
Top-pair forward-backward asymmetry beyond next-to-leading order
2011
We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the QCD contribution to the top-quark pair production forward-backward asymmetry at the Tevatron. In particular, we supplement the fixed-order next-to-leading order calculation with higher-order corrections from soft-gluon resummation at next-to next-to-leading order accuracy performed in two different kinematic schemes, which allows us to make improved predictions for the asymmetry in the $p\overline{p}$ and $t\overline{t}$ rest frames as a function of the rapidity and invariant mass of the $t\overline{t}$ pair. Furthermore, we provide binned results which …
Scalable Dense Factorizations for Heterogeneous Computational Clusters
2008
This paper discusses the design and the implementation of the LU factorization routines included in the Heterogeneous ScaLAPACK library, which is built on top of ScaLAPACK. These routines are used in the factorization and solution of a dense system of linear equations. They are implemented using optimized PBLAS, BLACS and BLAS libraries for heterogeneous computational clusters. We present the details of the implementation as well as performance results on a heterogeneous computing cluster.
Large-scale genome-wide association studies on a GPU cluster using a CUDA-accelerated PGAS programming model
2015
[Abstract] Detecting epistasis, such as 2-SNP interactions, in genome-wide association studies (GWAS) is an important but time consuming operation. Consequently, GPUs have already been used to accelerate these studies, reducing the runtime for moderately-sized datasets to less than 1 hour. However, single-GPU approaches cannot perform large-scale GWAS in reasonable time. In this work we present multiEpistSearch, a tool to detect epistasis that works on GPU clusters. While CUDA is used for parallelization within each GPU, the workload distribution among GPUs is performed with Unified Parallel C++ (UPC++), a novel extension of C++ that follows the Partitioned Global Address Space (PGAS) model…
Large-Scale Clustering of Short Reads for Metagenomics On GPUs
2013
Heavy-Flavor Contribution to Bhabha Scattering
2008
We evaluate the last missing piece of the two-loop QED corrections to the high-energy electron-positron scattering cross section originating from the vacuum polarization by heavy fermions. The calculation is performed within a new approach applicable to a wide class of perturbative problems with mass hierarchy. The result is crucial for the high-precision physics program at existing and future e(+) e(-) colliders.
Iterative moment method for electromagnetic transients in grounding systems on CRAY T3D
1996
In this paper the parallel aspects of an electromagnetic model for transients in grounding systems based on an iterative scheme are investigated in a multiprocessor environment. A coarse and fine grain parallel solutions have been developed on the CRAY T3D, housed at CINECA, equipped with 64 processors working in space sharing modality. The performances of the two parallel approaches implemented according to the work sharing parallel paradigm have been evaluated for different problem sizes employing variable number of processors.
Computational issues of an electromagnetics transient meshless method
2019
In this paper we refer to the computational issues in solving Maxwell’ s curl equations without using any connectivity among the points in which the problem domain is discretized. The adopted procedure is able to approximate the electric and magnetic vector fields making use of the derivatives of a kernel function at points arranged in the computational domain. In order to improve the numerical accuracy, dealing with irregular data distribution or data located near the boundary, a suitable strategy is considered. The computational core of the overall process requires elementary linear algebra operations. In the paper the method is presented and the discussion is revolved to the computationa…
Statistical Learning for End-to-End Simulations
2018
End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable…
Toward a Collective Agenda on AI for Earth Science Data Analysis
2021
In the last years we have witnessed the fields of geosciences and remote sensing and artificial intelligence to become closer. Thanks to both the massive availability of observational data, improved simulations, and algorithmic advances, these disciplines have found common objectives and challenges to advance the modeling and understanding of the Earth system. Despite such great opportunities, we also observed a worrying tendency to remain in disciplinary comfort zones applying recent advances from artificial intelligence on well resolved remote sensing problems. Here we take a position on research directions where we think the interface between these fields will have the most impact and be…