Search results for "Computers"
showing 10 items of 3243 documents
Sentinel-3/FLEX Biophysical Product Confidence Using Sentinel-2 Land-Cover Spatial Distributions
2021
The estimation of biophysical variables from remote sensing data raises important challenges in terms of the acquisition technology and its limitations. In this way, some vegetation parameters, such as chlorophyll fluorescence, require sensors with a high spectral resolution that constrains the spatial resolution while significantly increasing the subpixel land-cover heterogeneity. Precisely, this spatial variability often makes that rather different canopy structures are aggregated together, which eventually generates important deviations in the corresponding parameter quantification. In the context of the Copernicus program (and other related Earth Explorer missions), this article propose…
Exploring the Validity of the Long-Term Data Record V4 Database for Land Surface Monitoring
2016
A new version of the long-term data record (LTDR)—Version 4—has been released recently by NASA. This database includes daily information for all advanced very high resolution radiometer channels, as well as ancillary data, from July 1981 up to present. This dataset is the longest available record of remotely sensed data useful for land surface monitoring, since it allows the daily estimation of vegetation indices, as well as the estimation of land surface temperature (LST). Here, we analyze the fitness of this database for land surface monitoring, especially as regards long-term trends and their validity. To that end, we estimated normalized difference vegetation index (NDVI), LST, as well …
Evaluation of Disaggregation Methods for Downscaling MODIS Land Surface Temperature to Landsat Spatial Resolution in Barrax Test Site
2016
Thermal infrared (TIR) data are usually acquired at a coarser spatial resolution (CR) than visible and near infrared (VNIR). Several disaggregation methods have been recently developed to enhance the TIR spatial resolution using VNIR data. These approaches are based on the retrieval of a relation between TIR and VNIR data at CR, or training of a neural network, to be applied at the fine resolution afterward. In this work, different disaggregation methods are applied to the combination of two different sensors in the experimental test site of Barrax, Spain. The main objective is to test the feasibility of these techniques when applied to satellites provided with no TIR bands. Landsat and mod…
Simulation of Future Geostationary Ocean Color Images
2012
The objective of this work is to simulate global images that would be provided by a theoretical ocean color sensor on a geostationary orbit at longitude 0, in order to assess the range of radiance value data reaching the sensor throughout the day for 20 spectral bands similar to those of the Ocean and Land Color Imager (OLCI). The secondary objective is to assess the illumination and viewing geometries that result in sunglint. For this purpose, we combined a radiative transfer model for ocean waters (Hydrolight) and a radiative transfer model for atmosphere (MODTRAN) to construct the simulated radiance images at the sea surface and at the Top-Of-Atmosphere (TOA). Bio-optical data from GlobC…
Trends in phenological parameters and relationship between land surface phenology and climate data in the Hyrcanian forests of Iran
2017
Vegetation activity may be changed in response to climate variability by affecting seasonality and phenological events. Monitoring of land surface phenological changes play a key role in understanding feedback of ecosystem dynamics. This study focuses on the analysis of trends in land surface phenology derived parameters using normalized difference vegetation index time series based on Global Inventory Monitoring and Mapping Studies data in the Hyrcanian forests of Iran covering the period 1981–2012. First, we applied interpolation for data reconstruction in order to remove outliers and cloud contamination in time series. Phenological parameters were retrieved by using the midpoint approach…
Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation
2017
Source at https://doi.org/10.1109/JSTARS.2016.2641583. Gaussian process regression (GPR) has experienced tremendous success in biophysical parameter retrieval in the past years. The GPR provides a full posterior predictive distribution so one can derive mean and variance predictive estimates, i.e., point-wise predictions and associated confidence intervals. GPR typically uses translation invariant covariances that make the prediction function very flexible and nonlinear. This, however, makes the relative relevance of the input features hardly accessible, unlike in linear prediction models. In this paper, we introduce the sensitivity analysis of the GPR predictive mean and variance functions…
A spatially consistent downscaling approach for SMOS using an adaptive window
2017
The European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) is the first spaceborne mission using L-band radiometry to monitor the Earth's global surface soil moisture (SM). After more than 7 years in orbit, many studies have contributed to improve the quality and applicability of SMOS-derived SM maps. In this research, a novel downscaling algorithm for SMOS is proposed to obtain high-resolution (HR) SM maps at 1 km (L4), from the ∼40 km native resolution of the instrument. This algorithm introduces the concept of a shape adaptive moving window as an improvement of the current semi-empirical downscaling approach at SMOS Barcelona Expert Center, based on the “universal triangle…
Foreword to the Special Issue on IGARSS 2018
2019
The papers in this special issue were presented at the 2018 International Geoscience and Remote Sensing Symposium (IGARSS-2018) was held on July 22–27, 2018 in Valencia, Spain.
Trend Analysis of Global MODIS-Terra Vegetation Indices and Land Surface Temperature Between 2000 and 2011
2013
Previous works have shown that the combination of vegetation indices with land surface temperature (LST) improves the analysis of vegetation changes. Here, global MODIS-Terra monthly data from 2000 to 2011 were downloaded and organized into LST, NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) time series. These time series were then corrected from cloud and atmospheric residual contamination through the IDR (iterative Interpolation for Data Reconstruction) method. Then, statistics were retrieved from both corrected time series, and the YLCD (Yearly Land Cover Dynamics) approach has been applied to data sources (NDVI-LST and EVI-LST) to analyze changes in th…
The Added-Value of Remotely-Sensed Soil Moisture Data for Agricultural Drought Detection in Argentina
2021
In countries where the economy relies mostly on agricultural-livestock activities, such as Argentina, droughts cause significant economic losses. Currently, the most-used drought indices by the Argentinian National Meteorological and Hydrological Services are based on field precipitation data, such as the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). In this article, we explored the performance of the satellite-based soil moisture agricultural drought index (SMADI) for agricultural drought detection in Argentina during 2010-2015, and compared it with the one from the standardized soil moisture anomalies (SSMA), SPI and SPEI (at on…