Search results for "Configuration Interaction"

showing 10 items of 99 documents

Selected dissociation‐ and correlation‐consistent configuration interaction by a perturbative criterion

1990

We propose a perturbative criterion to select the most important dissociation‐ or correlation‐consistent type of contributions to perform generalized valence bond‐configuration interaction (GVB‐CI) calculations, dissociation‐consistent configuration interaction (DCCI) or correlation‐consistent configuration interaction (CCCI) approach, respectively. The procedure presented is computationally less demanding than the CCCI proposed by Goddard and co‐workers. To ensure the distance consistency of the MOs used, the nonvalence virtual orbitals are obtained by a projection technique. The results obtained for a few test calculations show the ability of the suggested approach to get close results to…

Diatomic MoleculesValence (chemistry)ChemistryConfiguration Interaction ; Electronic Structure ; Dissociation Energy ; Perturbation Theory ; Diatomic Molecules ; Polyatomic MoleculesGeneral Physics and AstronomyDissociation EnergyElectronic structureConfiguration interactionBond-dissociation energyDiatomic moleculeDissociation (chemistry)Polyatomic MoleculesUNESCO::FÍSICA::Química físicaConfiguration InteractionElectronic StructureAtomic orbitalComputational chemistryPerturbation TheoryPerturbation theory (quantum mechanics)Statistical physicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]The Journal of Chemical Physics
researchProduct

Ab Initio Methods for Excited States

2005

This chapter focuses mainly on the performance of ab initio methods for the description of spectroscopic molecular properties of compounds. Most of the quantum-chemical methods developed up to date are based on the concept of the one-electron wave function. The electronic states of a system with N electrons are described by a double expansion. Molecular orbitals (MOs) are one-electron wave functions expressed as linear combinations of a known one-electron basis set (K) and the N electron wave function is formulated in a many-electron basis set formed by determinants (or linear combination of them to form spin-adapted wave functions), built as normalized antisymmetric products of MOs. Accord…

Electronic correlationChemistryAb initioMolecular orbitalConfiguration interactionPerturbation theoryAtomic physicsWave functionLinear combinationBasis set
researchProduct

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

Calculation of excited-state properties using general coupled-cluster and configuration-interaction models.

2004

Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-…

General Physics and AstronomyConfiguration interactionStationary pointchemistry.chemical_compoundsymbols.namesakeCoupled clusterAcetylenechemistryQuantum mechanicsExcited statesymbolsPhysical and Theoretical ChemistryAtomic physicsWave functionHamiltonian (quantum mechanics)ExcitationThe Journal of chemical physics
researchProduct

A CI study of the CuCO and CuCO+ complexes

1987

MO CI calculations are carried out using an optimal space of valence virtual MOs obtained by means of a projection technique, as a linear combination of the AOs which are more occupied in the molecular Fock space. Localization of the occupied MOs and nonvalence virtual MOs is also achieved. The overall procedure is proven to be quite advantageous and well suited to obtain potential energy curves which keep the same physical meaning along the range of distances studied. Using a slightly better than double‐zeta quality basis set, a valence CAS‐CI, and selected CI wave function by the CIPSI algorithm have revealed a possible weak van der Waals interaction for the 2Σ+ state of CuCO, which remai…

General Physics and AstronomyElectronic structureCopper CompoundsMolecular physicsCopper Complexessymbols.namesake:FÍSICA [UNESCO]CarbonylsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Basis setPi backbondingValence (chemistry)Electronic correlationChemistryUNESCO::FÍSICAConfiguration interactionPotential energyUNESCO::FÍSICA::Química físicaConfiguration InteractionValenceElectronic StructuresymbolsElectron CorrelationConfiguration Interaction ; Electron Correlation ; Copper Compounds ; Carbonyls ; Copper Complexes ; Electronic Structure ; Valencevan der Waals forceAtomic physicsThe Journal of Chemical Physics
researchProduct

Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene

1996

Algorithms for calculating singlet excitation energies in the coupled cluster singles and doubles (CCSD) model are discussed and an implementation of an atomic-integral direct algorithm is presented. Each excitation energy is calculated at a cost comparable to that of the CCSD ground-state energy. Singlet excitation energies are calculated for benzene using up to 432 basis functions. Basis-set effects of the order of 0.2 eV are observed when the basis is increased from augmented polarized valence double-zeta (aug-cc-pVDZ) to augmented polarized valence triple-zeta (aug-cc-pVTZ) quality. The correlation problem is examined by performing calculations in the hierarchy of coupled cluster models…

General Physics and AstronomyElectronic structurePhysics and Astronomy (all)Physics::Atomic and Molecular ClustersSinglet statePhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Calculation MethodsValence (chemistry)TripletsElectronic correlationChemistryBenzeneExcited StatesConfiguration interactionUNESCO::FÍSICA::Química físicaConfiguration InteractionCoupled clusterElectronic StructureExcited stateElectron CorrelationBenzene ; Excited States ; Calculation Methods ; Algorithms ; Triplets ; Electronic Structure ; Configuration Interaction ; Correlation Functions ; Electron CorrelationAtomic physicsCorrelation FunctionsExcitationAlgorithms
researchProduct

Gamow-Teller response in the configuration space of a density-functional-theory–rooted no-core configuration-interaction model

2018

Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics.Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational sy…

HE-8Nuclear TheoryNUCLEAR-STRUCTURE114 Physical sciences01 natural sciencesENERGY-LEVELSQuantum mechanics0103 physical sciencesBETA-DECAY010306 general physicsPhysicsta114nuclear density functional theory010308 nuclear & particles physicsGROUND-STATE PROPERTIESNuclear structureNuclear shell modelConfiguration interactionelectroweak interactions in nuclear physicsIsospinAtomic nucleusSHELL-MODELSlater determinantSum rule in quantum mechanicsConfiguration spacebeta decayPhysical Review C
researchProduct

Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interactio…

1994

Intermediate Hamiltonians are effective Hamiltonians which are defined on an N‐dimensional model space but which only provide n<N exact eigenvalues and the projections of the corresponding eigenvectors onto the model space. For a single root research, the intermediate Hamiltonian may be obtained from the restriction of the Hamiltonian to the model space by an appropriate, uniquely defined dressing of the diagonal energies or of the first column. Approximate self‐consistent dressings may be proposed. The simplest perturbative form gives the same result as the original 2nd order intermediate Hamiltonian or the ‘‘shifted Bk’’ technique but it is of easier implementation. Self‐consistent inclus…

HamiltoniansHamiltonians ; Configuration Interaction ; Scf Calculations ; Eigenvalues ; Eigenvectors ; Degeneration ; Many−Body Problem ; Electronic StructureDiagonalGeneral Physics and AstronomyElectronic structureMany−Body ProblemMany-body problemsymbols.namesakePauli exclusion principleQuantum mechanicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Eigenvalues and eigenvectorsMathematical physicsMathematicsDegenerate energy levelsEigenvaluesScf CalculationsConfiguration interactionUNESCO::FÍSICA::Química físicaConfiguration InteractionElectronic StructureDegenerationsymbolsEigenvectorsHamiltonian (quantum mechanics)The Journal of Chemical Physics
researchProduct

Multiplet coupling and band structure in L2,3-edge XAS through multi-channel multiple scattering theory.

2009

International audience; Using the recently developed multi-channel multiple scattering (MCMS) method we have calculated the x-ray absorption spectra (XAS) at the L2,3-edge of transition metal compounds. The MCMS method is an ab initio scheme which combines an accurate description of the band structure of the material with a correlated many-electron wave function on the absorber atom. Thereby configuration interaction in the XAS final state, in particular multiplet effects, can be taken into account. In the present implementation, we use an electron-hole wave function and treat the interaction with all other electrons on a mean-field level. The calculated spectra agree well with experiment f…

HistoryChemistryMagnetic circular dichroismScatteringAb initio02 engineering and technologyConfiguration interaction021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesSpectral lineComputer Science ApplicationsEducationCondensed Matter::Materials Science0103 physical sciencesAtomic physics010306 general physics0210 nano-technologyElectronic band structureGround stateMultiplet
researchProduct

Molecular electric quadrupole moments calculated with matrix dressed SDCI

2002

Abstract We have calculated the molecular electric quadrupole moment (MEQM) for the set of molecules N 2 , C 2 H 2 , CO, CO 2 , CS 2 , HF, and BH. We have used SR-SDCI and (SC) 2 -SR-SDCI methods and we have compared our results with high-level theoretical ones, including FCI values for HF and BH, and with experimental values. The calculated MEQM provides a test of the effect that the energy converged (SC) 2 dressing method brings to the SDCI wavefunctions. The results suggest that the (SC) 2 -SR-SDCI method can be a cost-effective and quite accurate method for the calculation of post-SCF effects on electric quadrupole moments.

Matrix (mathematics)ChemistryComputational chemistryTriatomic moleculeQuadrupoleGeneral Physics and AstronomyDressing methodMoleculePhysical and Theoretical ChemistryAtomic physicsConfiguration interactionWave functionDiatomic moleculeChemical Physics Letters
researchProduct