Search results for "Conjugate gradient method"
showing 3 items of 23 documents
CALIBRATION OF LÉVY PROCESSES USING OPTIMAL CONTROL OF KOLMOGOROV EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS
2018
We present an optimal control approach to the problem of model calibration for L\'evy processes based on a non parametric estimation procedure. The calibration problem is of considerable interest in mathematical finance and beyond. Calibration of L\'evy processes is particularly challenging as the jump distribution is given by an arbitrary L\'evy measure, which form a infinite dimensional space. In this work, we follow an approach which is related to the maximum likelihood theory of sieves. The sampling of the L\'evy process is modelled as independent observations of the stochastic process at some terminal time $T$. We use a generic spline discretization of the L\'evy jump measure and selec…
A New Augmented Lagrangian Approach for $L^1$-mean Curvature Image Denoising
2015
Variational methods are commonly used to solve noise removal problems. In this paper, we present an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean curvature of the graph of the image as a regularizer, discretization being achieved via a finite element method. When a particular alternating direction method of multipliers is applied to the solution of the resulting saddle-point problem, this solution reduces to an iterative sequential solution of four subproblems. These subproblems are solved using Newton’s method, the conjugate gradient method, and a partial solution variant of the cyclic reduction method. The approach considered here differs from ex…
Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates
2014
Abstract Macroinvertebrates form an important functional component of aquatic ecosystems. Their ability to indicate various types of anthropogenic stressors is widely recognized which has made them an integral component of freshwater biomonitoring. The use of macroinvertebrates in biomonitoring is dependent on manual taxa identification which is currently a time-consuming and cost-intensive process conducted by highly trained taxonomical experts. Automated taxa identification of macroinvertebrates is a relatively recent research development. Previous studies have displayed great potential for solutions to this demanding data mining application. In this research we have a collection of 1350 …