Search results for "Conservation law"
showing 10 items of 86 documents
Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux
2016
We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …
Time propagation of the Kadanoff–Baym equations for inhomogeneous systems
2009
We have developed a time propagation scheme for the Kadanoff-Baym equations for general inhomogeneous systems. These equations describe the time evolution of the nonequilibrium Green function for interacting many-body systems in the presence of time-dependent external fields. The external fields are treated nonperturbatively whereas the many-body interactions are incorporated perturbatively using Phi-derivable self-energy approximations that guarantee the satisfaction of the macroscopic conservation laws of the system. These approximations are discussed in detail for the time-dependent Hartree-Fock, the second Born and the GW approximation.
Nonlinear Diffusion in Transparent Media
2021
Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.
Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations
2004
We assess the suitability of a recent high-resolution central scheme developed by Kurganov & Tadmor (2000) for the solution of the relativistic hydrodynamics equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabili…
A ‘TVD-like’ Scheme for Conservation Laws with Source Terms
2008
The theoretical foundations of high-resolution TVD schemes for homogeneous scalar conservation laws and linear systems of conservation laws have been firmly established through the work of Harten [5], Sweby [11], and Roe [9]. These TVD schemes seek to prevent an increase in the total variation of the numerical solution, and are successfully implemented in the form of flux-limiters or slope limiters for scalar conservation laws and systems. However, their application to conservation laws with source terms is still not fully developed. In this work we analyze the properties of a second order, flux-limited version of the Lax-Wendroff scheme preserving steady states [3]. Our technique is based …
Test of the electric charge conservation law with Borexino detector
2015
International audience; The new limit on the electron lifetime is obtained from data of the Borexino experiment. The expected signal from the e → γν decay mode is a 256 keV photon detected in liquid scintillator. Because of the extremely low radioactive background level in the Borexino detector it was possible to improve the previous measurement by two orders of magnitude.
Hybrid WENO schemes for polydisperse sedimentation models
2015
International audience; Polydisperse sedimentation models can be described by a strongly coupled system of conservation laws for the concentration of each species of solids. Typical solutions for the sedimentation model considered for batch settling in a column include stationary kinematic shocks separating layers of sediment of different composition. This phenomenon, known as segregation of species, is a specially demanding task for numerical simulation due to the need of accurate numerical simulations. Very high-order accurate solutions can be constructed by incorporating characteristic information, available due to the hyperbolicity analysis made in Donat and Mulet [A secular equation fo…
Electromagnetic Duality Anomaly in Curved Spacetimes
2016
The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in presence of a background classical gravitational field with a non-trivial Chern-Pontryagin invariant, in a parallel way to the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.
Abelian current algebra and the Virasoro algebra on the lattice
1993
We describe how a natural lattice analogue of the abelian current algebra combined with free discrete time dynamics gives rise to the lattice Virasoro algebra and corresponding hierarchy of conservation laws.
Generalized Camassa-Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions
2021
In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the…