Search results for "Cor"

showing 10 items of 22619 documents

Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum , endophytically colonise roots of non‐ectomycorrhizal plants in natural environments

2020

International audience; Serendipitous findings and studies on Tuber species suggest that some ectomycorrhizal fungi, beyond their complex interaction with ectomycorrhizal hosts, also colonise roots of nonectomycorrhizal plants in a loose way called endophytism. Here, we investigate endophytism of T. melanosporum and T. aestivum . We visualised endophytic T. melanosporum hyphae by fluorescent in situ hybridisation on nonectomycorrhizal plants. For the two Tuber species, microsatellite genotyping investigated the endophytic presence of the individuals whose mating produced nearby ascocarps. We quantified the expression of four T. aestivum genes in roots of endophyted, non‐ectomycorrhizal plan…

0106 biological sciences0301 basic medicineHyphaPlant rootsPhysiology[SDV]Life Sciences [q-bio]fungifood and beveragesPlant ScienceEnvironmentBiology01 natural sciencesApoplastSpore03 medical and health sciences030104 developmental biologyAscomycotaMeiosisTuber melanosporumMycorrhizaeBotany[SDE]Environmental SciencesLIVING STATUSMating010606 plant biology & botany
researchProduct

Within‐host interactions shape virulence‐related traits of trematode genotypes

2018

Within-host interactions between co-infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co-infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host-parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection…

0106 biological sciences0301 basic medicineInfectivityGeneticsbiologyCoinfectionHost (biology)Virulencebiology.organism_classificationPathogenicityBiological Evolution010603 evolutionary biology01 natural sciencesDiplostomum pseudospathaceumHost-Parasite Interactions03 medical and health sciences030104 developmental biologyOncorhynchus mykissGenotypeAnimalsParasite hostingEye Infections ParasiticTrematodaEvolutionary dynamicsEcology Evolution Behavior and SystematicsJournal of Evolutionary Biology
researchProduct

Evolutionary constraints of warning signals: A genetic trade-off between the efficacy of larval and adult warning coloration can maintain variation i…

2016

To predict evolutionary responses of warning signals under selection, we need to determine the inheritance pattern of the signals, and how they are genetically correlated with other traits contributing to fitness. Furthermore, protective coloration often undergoes remarkable changes within an individual's lifecycle, requiring us to quantify the genetic constraints of adaptive coloration across all the relevant life stages. Based on a 12 generation pedigree with > 11,000 individuals of the wood tiger moth (Arctia plantaginis), we show that high primary defense as a larva (large warning signal) results in weaker defenses as adult (less efficient warning color), due to the negative genetic cor…

0106 biological sciences0301 basic medicineLarvaDirectional selectionEcologyInheritance (genetic algorithm)Phenotypic traitAposematismBiologyTrade-off010603 evolutionary biology01 natural sciencesGenetic correlation03 medical and health sciences030104 developmental biologyEvolutionary biologyGeneticsGeneral Agricultural and Biological SciencesEcology Evolution Behavior and SystematicsSelection (genetic algorithm)Evolution
researchProduct

Líquenes y hongos liquenícolas de la Serranía de Ronda (Málaga-Cádiz), sur de España

2017

As a result of a field trip organised by the Spanish Lichen Society in Serranía de Ronda, south Spain, a catalogue of 360 taxa is presented (336 lichens, 24 lichenicolous fungi). The list includes three new records for the Iberian Peninsula: Arthonia paretinaria, Micarea myriocarpa and Niesslia keissleri, 51new ones for the Autonomous Andalusian Community, and three and 81 new ones for the province of Cádiz and of Málaga, respectively. After these results, the total updated number of the province of Málaga rises to 556 lichens and lichenicolous fungi. The best represented lichen genus is Cladonia (18) with the most species, unlike Lecanora (15), Pertusaria (12), Physconia (12) and Collema (…

0106 biological sciences0301 basic medicineLichensArthoniaLecanoraNiesslia.Plant Science010603 evolutionary biology01 natural sciences03 medical and health sciencesArthoniaFongsMicareaBotanyPertusariaLíquensLichenEcology Evolution Behavior and SystematicsCollemabiologyCladonianuevas citasPhysconiaBotánicaFunginew recordsForestry030108 mycology & parasitologybiology.organism_classificationCrustose
researchProduct

The bacterial microbiome of meloidogyne-based disease complex in coffee and tomato

2020

The Meloidogyne-based disease complexes (MDCs) are caused by the interaction of different root-knot nematode species and phytopathogenic fungi. These complexes are devastating several important crops worldwide including tomato and coffee. Despite their relevance, little is known about the role of the bacterial communities in the MDCs. In this study 16s rDNA gene sequencing was used to analyze the bacterial microbiome associated with healthy and infested roots, as well with females and eggs of Meloidogyne enterolobii and M. paranaensis, the causal agents of MDC in tomato and coffee, respectively. Each MDC pathosystems displayed a specific taxonomic diversity and relative abundances constitut…

0106 biological sciences0301 basic medicineMeloidogynePathologie végétalePlant Sciencelcsh:Plant culture01 natural scienceshttp://aims.fao.org/aos/agrovoc/c_479203 medical and health sciencesMaladie des planteshttp://aims.fao.org/aos/agrovoc/c_5962Meloidogyne paranaensisSolanum lycopersicumcorky rootAlteromonadalesBotanyhttp://aims.fao.org/aos/agrovoc/c_1721lcsh:SB1-1110MicrobiomeH20 - Maladies des planteshttp://aims.fao.org/aos/agrovoc/c_4475Original Researchfunctional profilehttp://aims.fao.org/aos/agrovoc/c_4729biologypathobiomeP34 - Biologie du solfood and beveragesNocardiaCoffea arabicabiology.organism_classification16S ribosomal RNABacillalesMeloidogyne enterolobiiBurkholderiales030104 developmental biologyNematodehttp://aims.fao.org/aos/agrovoc/c_5974Meloidogyne enterolobii010606 plant biology & botany
researchProduct

Species Richness, rRNA Gene Abundance, and Seasonal Dynamics of Airborne Plant-Pathogenic Oomycetes

2018

Oomycetes, also named Peronosporomycetes, are one of the most important and widespread groups of plant pathogens, leading to significant losses in the global agricultural productivity. They have been studied extensively in ground water, soil, and host plants, but their atmospheric transport vector is not well characterized. In this study, the occurrence of airborne Oomycetes was investigated by Sanger sequencing and quantitative PCR of coarse and fine aerosol particle samples (57 filter pairs) collected over a 1-year period (2006–2007) and full seasonal cycle in Mainz, Germany. In coarse particulate matter, we found 55 different hypothetical species (OTUs), of which 54 were plant pathogens …

0106 biological sciences0301 basic medicineMicrobiology (medical)Sanger sequencingSecondary infectionlcsh:QR1-50201 natural sciencesMicrobiologylcsh:Microbiology03 medical and health sciencesseasonal distributionqPCR analysisBotanyOriginal ResearchPeronosporomycetesbiologyCorrectionairborne OomycetesRibosomal RNAParticulatesbiology.organism_classificationplant pathogenmeteorological parameter030104 developmental biologyHyaloperonosporaPeronosporaPhytophthoraSpecies richnessHypothetical species010606 plant biology & botanyFrontiers in Microbiology
researchProduct

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Glomeromycotina: what is a species and why should we care?

2018

International audience; A workshop at the recent International Conference on Mycorrhiza was focused on species recognition in Glomeromycotina and parts of their basic biology that define species. The workshop was motivated by the paradigm-shifting evidence derived from genomic data for sex and for the lack of heterokaryosis, and by published exchanges in Science that were based on different species concepts and have led to differing views of dispersal and endemism in these fungi. Although a lively discussion ensued, there was general agreement that species recognition in the group is in need of more attention, and that many basic assumptions about the biology of these important fungi includ…

0106 biological sciences0301 basic medicinePhysiologyGenomic data[SDV]Life Sciences [q-bio]educationarbuscular mycorrhizal fungiclonalityPlant ScienceArbuscular mycorrhizal fungi01 natural sciences03 medical and health sciencesSpecies Specificityspecies recognitionSimilarity (psychology)Clonal reproductionsex[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyEndemismGlomeromycotaPhylogenyheterokaryosisGlomeromycotina030104 developmental biologyGeographyEvolutionary biology[SDE]Environmental SciencesBiological dispersal010606 plant biology & botany
researchProduct

Mixotrophy in diatoms: Molecular mechanism and industrial potential

2021

Diatoms are microalgae well known for their high variability and high primary productivity, being responsible for about 20% of the annual global carbon fixation. Moreover, they are interesting as potential feedstocks for the production of biofuels and high-value lipids and carotenoids. Diatoms exhibit trophic flexibility and, under certain conditions, they can grow mixotrophically by combing photosynthesis and respiration. So far, only a few species of diatoms have been tested for their mixotrophic metabolism; in some cases, they produced more biomass and with higher lipid content when grown under this condition. Phaeodactylum tricornutum is the most studied diatom species for its mixotroph…

0106 biological sciences0301 basic medicinePhysiologyrespiration.photosynthesisPlant SciencePhotosynthesisSettore BIO/19 - Microbiologia Generale01 natural sciences03 medical and health sciencesBotanydiatomMicroalgaeGeneticsSettore BIO/04 - Fisiologia VegetaleBiomassPhaeodactylum tricornutumPhotosynthesisTrophic levelDiatomsBiomass (ecology)biologyfungiCarbon fixationmicroalgaeCell BiologyGeneral Medicinebiology.organism_classificationmetabolism030104 developmental biologyDiatomBiofuelBiofuelsmixotrophyMixotroph010606 plant biology & botanyPhysiologia Plantarum
researchProduct

Evolution of the Dentition in Holocephalans (Chondrichthyes) Through Tissue Disparity

2020

Abstract The Holocephali is a major group of chondrichthyan fishes, the sister taxon to the sharks and rays (Elasmobranchii). However, the dentition of extant holocephalans is very different from that of the elasmobranchs, lacking individual tooth renewal, but comprising dental plates made entirely of self-renewing dentine. This renewal of all tissues occurs at the postero-lingual plate surface, as a function of their statodont condition. The fossil record of the holocephalans illuminates multiple different trends in the dentition, including shark-like teeth through to those with dentitions completely lacking individual teeth. Different taxa illustrate developmental retention of teeth but w…

0106 biological sciences0301 basic medicinePlant Science010603 evolutionary biology01 natural sciences03 medical and health sciencesCalcification Physiologicstomatognathic systemExtant taxonElasmobranchiiAnimalsDentitionFossil RecordbiologyDentitionFishesBiological evolutionAnatomybiology.organism_classificationBiological EvolutionChondrichthyesHolocephalistomatognathic diseases030104 developmental biologyAnimal Science and ZoologyWear resistantToothIntegrative and Comparative Biology
researchProduct