Search results for "Coronal mass ejections"

showing 3 items of 23 documents

Tracing the ICME plasma with a MHD simulation

2021

The determination of the chemical composition of interplanetary coronal mass ejection (ICME) plasma is an open issue. More specifically, it is not yet fully understood how remote sensing observations of the solar corona plasma during solar disturbances evolve into plasma properties measured in situ away from the Sun. The ambient conditions of the background interplanetary plasma are important for space weather because they influence the evolutions, arrival times, and geo-effectiveness of the disturbances. The Reverse In situ and MHD APproach (RIMAP) is a technique to reconstruct the heliosphere on the ecliptic plane (including the magnetic Parker spiral) directly from in situ measurements a…

Sun: coronal mass ejections (CMEs)FOS: Physical sciencesInterplanetary mediumAstrophysicsSpace weathermagnetohydrodynamics (MHD)Physics - Space PhysicsPhysics::Plasma PhysicsAstrophysics::Solar and Stellar AstrophysicsSun: abundancesSolar and Stellar Astrophysics (astro-ph.SR)PhysicsAstronomy and AstrophysicsPlasmasolar-terrestrial relationsSpace Physics (physics.space-ph)Physics - Plasma PhysicsComputational physicsPlasma Physics (physics.plasm-ph)Solar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsHeliospheric current sheetMagnetohydrodynamicsInterplanetary spaceflightHeliosphere
researchProduct

Three-Dimensional Simulations of Solar Wind Preconditioning and the 23 July 2012 Interplanetary Coronal Mass Ejection

2020

Predicting the large-scale eruptions from the solar corona and their propagation through interplanetary space remains an outstanding challenge in solar- and helio-physics research. In this article, we describe three dimensional magnetohydrodynamic simulations of the inner heliosphere leading up to and including the extreme interplanetary coronal mass ejection (ICME) of 23 July 2012, developed using the code PLUTO. The simulations are driven using the output of coronal models for Carrington rotations 2125 and 2126 and, given the uncertainties in the initial conditions, are able to reproduce an event of comparable magnitude to the 23 July ICME, with similar velocity and density profiles at 1 …

astro-ph.SRSpace weather010504 meteorology & atmospheric sciencesMHDSolar windSTORMFOS: Physical sciencesMagnitude (mathematics)Context (language use)PROPAGATIONAstronomy & AstrophysicsDisturbancesSpace weatherPROTON01 natural sciencesEVENTSMagnetohydrodynamicsPhysics - Space Physicsphysics.plasm-ph0201 Astronomical and Space Sciences0103 physical sciences010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsScience & TechnologySUNAstronomy and AstrophysicsARRIVALGeophysicsEVOLUTIONSpace Physics (physics.space-ph)Physics - Plasma PhysicsPlasma Physics (physics.plasm-ph)PlutoSolar windAstrophysics - Solar and Stellar Astrophysicsphysics.space-ph13. Climate actionSpace and Planetary ScienceDragPhysical Sciencesastro-ph.EPMagnetohydrodynamicsInterplanetary coronal mass ejectionsHeliosphereAstrophysics - Earth and Planetary AstrophysicsSolar Physics
researchProduct

Constraining the pass-band of future space-based coronagraphs for observations of solar eruptions in the FeXIV 530.3 nm “green line”

2017

This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647214) and from the UK Science and Technology Facilities Council. Observations of the solar corona in the FeXIV 530.3 nm “green line” have been very important in the past, and are planned for future coronagraphs on-board forthcoming space missions such as PROBA-3 and Aditya. For these instruments, a very important parameter to be optimized is the spectral width of the band-pass filter to be centred over the “green line”. Focusing on solar eruptions, motions occurring along the line of sight will Doppler shift the line prof…

coronal mass ejections [Sun]corona [Sun]media_common.quotation_subjectAstrophysics01 natural sciences010309 opticssymbols.namesakeSuperposition principle0103 physical sciencesSpectral widthQB AstronomySun: Coronal mass ejections010303 astronomy & astrophysicsQCmedia_commonLine (formation)Spectral purityQBPhysicsLine-of-sightnumerical [Methods]Sun: CoronaAstronomyInstrumentation: CoronagraphsAstronomy and AstrophysicsDASQC Physics13. Climate actionSkySpace and Planetary Sciencecoronagraphs [Instrumentation]Methods: NumericalsymbolsMagnetohydrodynamicsDoppler effectExperimental Astronomy
researchProduct