Search results for "Cortex"

showing 10 items of 1827 documents

Fetal neurogenesis: breathe HIF you can.

2016

Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, s…

0301 basic medicineNeurogenesisNicheNeovascularization PhysiologicBiologyCell fate determinationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceFetusNeural Stem CellsmedicineAnimalsHumansNews & ViewsHypoxiaMolecular BiologyCentral elementreproductive and urinary physiologyCell ProliferationCerebral CortexFetusGeneral Immunology and MicrobiologyGeneral NeuroscienceNeurogenesisCell DifferentiationArticlesHypoxia-Inducible Factor 1 alpha Subunitnervous system diseasesOxygen030104 developmental biologymedicine.anatomical_structurenervous systemCerebral cortexImmunologyNeuronStem cellbiological phenomena cell phenomena and immunityNeuroscienceGlycolysisThe EMBO journal
researchProduct

Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

2016

Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…

0301 basic medicineNeuroscience(all)ThalamusGrowth ConesSensory systemBiologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineDiscrimination PsychologicalThalamusRadixinLysophosphatidic acidNeural PathwaysmedicineAnimalsPhosphorylationGrowth coneCerebral CortexMice KnockoutGeneral NeuroscienceMembrane ProteinsAxon GuidanceCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurechemistryCerebral cortexAxon guidanceSignal transductionLysophospholipidsNeuroscience030217 neurology & neurosurgerySignal TransductionNeuron
researchProduct

Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain

2017

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse cont…

0301 basic medicineNeurotransmitter transportermedicine.medical_specialtyMice03 medical and health sciencesProgranulins0302 clinical medicinePeripheral Nerve InjuriesInternal medicinemental disordersmedicineAnimalsPrefrontal cortexMolecular BiologyGranulinsMice KnockoutIon Transportbusiness.industryChronic painmedicine.diseaseZinc030104 developmental biologyNociceptionEndocrinologyCompulsive behaviorNeuropathic painPeripheral nerve injuryIntercellular Signaling Peptides and ProteinsNeuralgiaMolecular MedicineChronic Painmedicine.symptomCarrier Proteinsbusiness030217 neurology & neurosurgeryFrontotemporal dementiaBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

2016

The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that …

0301 basic medicineOlfactory systemVomeronasal organSistema nerviós central MalaltiesEfferentNeuroscience (miscellaneous)OlfactevomeronasalPiriform cortexAmygdala03 medical and health sciencesCellular and Molecular Neurosciencepiriform cortex0302 clinical medicineNeural tracingPiriform cortexCortex (anatomy)medicineOriginal ResearchOlfactory tubercleAnatomyamygdalaNeuroanatomiaAmygdalaolfactoryVentral tegmental areaNeuroanatomy030104 developmental biologymedicine.anatomical_structurenervous systemAnatomyneural tracingPsychologyVomeronasalNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesOlfactoryFrontiers in Neuroanatomy
researchProduct

Olfactory system in mammals: structural and functional anatomy

2016

Olfactory system in mammals: structural and functional anatomy

0301 basic medicineOlfactory systemanatomy[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionanimal diseasesmammalOlfactionBiology03 medical and health sciencesPrimary olfactory cortex0302 clinical medicineparasitic diseasesmedicinereproductive and urinary physiologyOlfactory receptorfungiAnatomyolfactoryOlfactory bulb[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologymedicine.anatomical_structurecortexFunctional anatomyepitheliumOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

Pregnancy Changes the Response of the Vomeronasal and Olfactory Systems to Pups in Mice

2020

Motherhood entails changes in behavior with increased motivation for pups, induced in part by pregnancy hormones acting upon the brain. This work explores whether this alters sensory processing of pup-derived chemosignals. To do so, we analyse the expression of immediate early genes (IEGs) in the vomeronasal organ (VNO; Egr1) and centers of the olfactory and vomeronasal brain pathways (cFos) in virgin and late-pregnant females exposed to pups, as compared to buttons (socially neutral control). In pup-exposed females, we quantified diverse behaviors including pup retrieval, sniffing, pup-directed attack, nest building and time in nest or on nest, as well as time off nest. Pups induce Egr1 ex…

0301 basic medicineOlfactory systemmedicine.medical_specialtymiceVomeronasal organSensory processingmedicine.medical_treatmentIEGsolfactory systemBiologyAmygdalalcsh:RC321-571vomeronasal system03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSniffingPiriform cortexInternal medicinemedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchAggressionpup chemosignalsStria terminalis030104 developmental biologyEndocrinologymedicine.anatomical_structureCellular Neurosciencesense organspregnancymedicine.symptom030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia

2019

Background During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. Methods In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n?=?30) and healthy controls (n?=?15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n?=?124) and healthy controls (n?=?54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n?=?3…

0301 basic medicineOncologyAdultMalemedicine.medical_specialtyCandidate geneTime FactorsImmunologyEukaryotic Initiation Factor-2Gene ExpressionPrefrontal CortexDiseaseCohort Studies03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineImmune systemPrognosis of schizophreniaInternal medicinemedicineHumansGeneEndocrine and Autonomic Systemsbusiness.industryCase-control studyHigh Mobility Group ProteinsBrainMiddle Agedmedicine.diseasePrognosis030104 developmental biologySchizophreniaCase-Control StudiesCohortSchizophreniaFemalebusinessTranscriptome030217 neurology & neurosurgeryBiomarkers
researchProduct

Assessing the Impact of Single-Cell Stimulation on Local Networks in Rat Barrel Cortex—A Feasibility Study

2019

In contrast to the long-standing notion that the role of individual neurons in population activity is vanishingly small, recent studies have shown that electrical activation of only a single cortical neuron can have measurable effects on global brain state, movement, and perception. Although highly important for understanding how neuronal activity in cortex is orchestrated, the cellular and network mechanisms underlying this phenomenon are unresolved. Here, we first briefly review the current state of knowledge regarding the phenomenon of single-cell induced network modulation and discuss possible underpinnings. Secondly, we show proof of principle for an experimental approach to elucidate …

0301 basic medicinePatch-Clamp TechniquesComputer scienceCortical neuronPopulationAction PotentialsStimulationjuxtacellularCatalysisArticleInorganic ChemistryRats Sprague-Dawleylcsh:Chemistry03 medical and health sciences0302 clinical medicineCortex (anatomy)medicinePremovement neuronal activityAnimalsCell stimulationRats Long-EvansPhysical and Theoretical ChemistryRats WistareducationMolecular Biologylcsh:QH301-705.5SpectroscopyNeuronseducation.field_of_studyOrganic ChemistrynanostimulationGeneral MedicineSomatosensory CortexBarrel cortexComputer Science ApplicationsRatsElectrophysiologyin vivo030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Feasibility Studiesbarrel cortexNeuronSingle-Cell AnalysisNeuroscience030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury

2017

Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in th…

0301 basic medicinePatch-Clamp TechniquesTraumatic brain injurySomatosensory system03 medical and health sciences0302 clinical medicineCortex (anatomy)Unilateral lesionBrain Injuries TraumaticNeuroplasticitymedicineAnimalsDiaschisisNeuronal PlasticityMotor CortexElectroencephalographySomatosensory Cortexmedicine.diseaseMice Inbred C57BLDisease Models AnimalElectrophysiology030104 developmental biologymedicine.anatomical_structureBrain HemisphereNeurology (clinical)PsychologyNeuroscience030217 neurology & neurosurgeryJournal of Neurotrauma
researchProduct

A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral s…

2017

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron degeneration in the motor cortex, brainstem and spinal cord. It is generally accepted that ALS is caused by death of motor neurons, however the exact temporal cascade of degenerative processes is not yet completely known. To identify the early pathological changes in spinal cord of G93A-SOD1 AIS mice we performed a comprehensive longitudinal analysis employing diffusion-tensor magnetic resonance imaging alongside histology and electron microscopy, in parallel with peripheral nerve histology. We showed the gradient of degeneration appearance in spinal cord white and gray matter, startin…

0301 basic medicinePathologyNeurologyTime FactorsMotor neuron diseasesSensory Receptor CellMice0302 clinical medicineImage Processing Computer-AssistedAxonAmyotrophic lateral sclerosisGray MatterAnthracenesWhite MatterMitochondriamedicine.anatomical_structureDiffusion Tensor ImagingNeurologySpinal CordG93A-SOD1 miceBrainstemHumanMotor cortexmedicine.medical_specialtyAxon degenerationTime FactorSensory Receptor CellsSOD1Mice TransgenicWhite matter03 medical and health sciencesMagnetic resonance imagingDevelopmental NeuroscienceMicroscopy Electron TransmissionmedicineElectron microscopyAnimalsHumansMotor neuron diseaseAmyotrophic lateral sclerosiAnimalbusiness.industrySuperoxide DismutaseAmyotrophic Lateral SclerosisSpinal cordmedicine.diseaseAmyotrophic lateral sclerosisMice Inbred C57BLDisease Models Animal030104 developmental biologyAnthracenebusinessNeuroscience030217 neurology & neurosurgeryExperimental neurology
researchProduct