Search results for "Cosmic Ray"
showing 10 items of 301 documents
Feasibility of 1 arcmin resolution gamma-ray air-Čerenkov multiple telescope experiment
1995
Abstract In this paper we discuss the feasibility of a ground based detector exploiting the technique of Cerenkov light stereo imaging of air showers for the detection of discrete cosmic sources of γ-rays with energy threshold of 100 GeV, angular resolution (HWHM) of 1 arcmin ( 1 3 mrad), cosmic ray background rejection ≥ 99%. This experiment will make possible a deep survey of the sky with sensitivity of 1 100 of the Crab in 45 h of exposure.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
2017
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities, have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e. accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decr…
XMM-Newton evidence of shocked ISM in SN 1006: indications of hadronic acceleration
2012
Shock fronts in young supernova remnants are the best candidates for being sites of cosmic ray acceleration up to a few PeV, though conclusive experimental evidence is still lacking. Hadron acceleration is expected to increase the shock compression ratio, providing higher postshock densities, but X-ray emission from shocked ambient medium has not firmly been detected yet in remnants where particle acceleration is at work. We exploited the deep observations of the XMM-Newton Large Program on SN 1006 to verify this prediction. We performed spatially resolved spectral analysis of a set of regions covering the southeastern rim of SN 1006. We studied the spatial distribution of the thermodynamic…
Search for neutrino emission from gamma-ray sources with the Antares Telescope
2012
ANTARES is the first undersea neutrino detector ever built and presently the neutrino telescope with the largest effective area operating in the Northern Hemisphere. A three- dimensional array of photomultiplier tubes detects the Cherenkov light induced by the muons produced in the interaction of high energy neutrinos with the matter surrounding the detector. The detection of astronomical neutrino sources is one of the main goals of ANTARES. The search for point-like neutrino sources with the ANTARES telescope is described and the preliminary results obtained with data collected from 2007 to 2010 are shown. No cosmic neutrino source has been observed and neutrino flux upper limits have been…
Evidence of 200 TeV photons from HAWC J1825-134
2020
The Earth is bombarded by ultra-relativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10$^{15}$ eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV $\gamma$-rays from decaying $\pi^0$, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cherenkov (HAWC) observatory of the $\gamma…
Interpretation of AMS-02 electrons and positrons data
2014
We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positron…
IceCube-Gen2: The Window to the Extreme Universe
2020
The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…
COS-B OBSERVATION OF THE MILKY WAY IN HIGH-ENERGY GAMMA RAYS
1980
New high energy γ-ray sources observed by COS B
1977
LOCALISED γ-ray sources contribute to the overall galactic emission; some of these sources have been identified with known astronomical objects1,2, while several unidentified γ-ray sources have also been reported3,4. We describe here a search for γ-ray sources using data from the ESA γ-ray satellite COS B which revealed 10 new unidentified sources. These sources seem to be galactic with typical γ-ray luminosities above 100 MeV in excess of 1035 erg s−1.
Underground cosmic-ray experiment EMMA
2013
EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 − 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyh¨asalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented. nonPeerReviewed