Search results for "Cosmic Ray"

showing 10 items of 301 documents

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

A Spatially Resolved Study of Hard X-Ray Emission in Kepler’s Supernova Remnant: Indications of Different Regimes of Particle Acceleration

2022

Abstract Synchrotron X-ray emission in young supernova remnants (SNRs) is a powerful diagnostic tool to study the population of high-energy electrons accelerated at the shock front and the acceleration process. We performed a spatially resolved spectral analysis of NuSTAR and XMM-Newton observations of the young Kepler’s SNR, aiming to study in detail its nonthermal emission in hard X-rays. We selected a set of regions all around the rim of the shell and extracted the corresponding spectra. The spectra were analyzed by adopting a model of synchrotron radiation in the loss-limited regime, to constrain the dependence of the cutoff energy of the synchrotron radiation on the shock velocity. We …

Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceSupernova remnants (1667)Astronomy and AstrophysicsCosmic ray sources (328)The Astrophysical Journal
researchProduct

XMM-Newton large programme on SN1006 - II. Thermal emission

2016

Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions dominated by thermal emission. With some key improvements in spectral analysis as compared to Paper~I, we obtain much better spectral fitting results with less residuals. The spatial distributions of the thermal and ionization states of the ISM and ejecta show different features, which are consistent with a scenario that the ISM (ejecta) is heated and ionized by the forward (reverse) shock propagating outward (inward). Different elements have differe…

Shock wave010504 meteorology & atmospheric sciences[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesCosmic rayAstrophysicsMethods: Data analysi01 natural sciencesSpectral linecosmic raysIonization0103 physical sciencesEjectaSupernova remnant010303 astronomy & astrophysics0105 earth and related environmental sciencesLine (formation)ISM: supernova remnantsacceleration of particlesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomyAstronomy and Astrophysicsshock wavesAstronomy and AstrophysicAcceleration of particlemethods: data analysisCosmic rayX-rays: ISMInterstellar mediumISM: Supernova remnant13. Climate actionShock waveSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Supernova remnants; Methods: Data analysis; Shock waves; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [Acceleration of particles; Cosmic rays; ISM]
researchProduct

Modeling particle acceleration and non-thermal emission in supernova remnants

2021

According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emission that is compatible with being synchrotron or inverse Compton radiation from high energy electrons, or pion decay due to proton-proton interactions. These observations of growing quantity and quality promise to unveil many aspects of CRs acceleration and require more and more accurate tools for their interpretation. Here, we show how multi-dimensional MHD models of SNRs, including the effects on shock dynamics due to back-reaction of acceler…

Shock waveMagnetohydrodynamics (MHD)Radiation mechanisms: non-thermalElectromagnetic spectrumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsElectronRadiation01 natural sciencesShock wavesAcceleration0103 physical sciencesCosmic rays010303 astronomy & astrophysicsInstrumentationAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsParticle accelerationSupernovaSpace and Planetary SciencePhysics::Accelerator PhysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Radio polarization maps of shell-type SNRs II. Sedov models with evolution of turbulent magnetic field

2017

Polarized radio emission has been mapped with great detail in several Galactic supernova remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evolution phase. At first, 3-dimensional structure of a SNR has been computed, by modeling the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The generation and dissipation of the turbulent component of magnetic field everywhere in SNR are also considered taking into account its interaction with accelerated particles. Then, in order to model the emission, we have used a generalization of t…

Shock waveRadiation mechanisms: non-thermalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencessymbols.namesake0103 physical sciencesFaraday effectStokes parameters010306 general physics010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsAstronomy and AstrophysicDissipationAcceleration of particlePolarization (waves)Cosmic rayMagnetic fieldSupernovaShock waveSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment

2018

Monthly notices of the Royal Astronomical Society 479(3), 4253 - 4270 (2018). doi:10.1093/mnras/sty1750

Shock waveshock wave010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesISM: magnetic field0103 physical sciencesRadiative transferAdiabatic process010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicssupernova remnants [ISM]magnetic fields [ISM]Astronomy and Astrophysicsshock wavesAstronomy and Astrophysic520Magnetic fieldSupernovaSpace and Planetary Scienceddc:520Oblique shockMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

MODELING SNR CASSIOPEIA A from the SUPERNOVA EXPLOSION to ITS CURRENT AGE: The ROLE of POST-EXPLOSION ANISOTROPIES of EJECTA

2016

The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the SNR Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim to derive the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described by small-scale clumping of material and larger-s…

Shock waveshock waveFOS: Physical sciencesCosmic rayAstrophysicsKinetic energy01 natural sciencessupernova remnants; shock waves; supernovae: individual (Cassiopeia A); Space and Planetary Science; Astronomy and Astrophysics [cosmic rays; hydrodynamics; instabilities; ISM]0103 physical sciencessupernovae: individual (Cassiopeia A)hydrodynamics instabilitiesAnisotropyEjecta010303 astronomy & astrophysicsCosmic rayscosmic rayISM: supernova remnantISM: supernova remnantshydrodynamicHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsinstabilitie010308 nuclear & particles physicsCosmic rays hydrodynamics instabilities ISM: supernova remnants shock waves;supernovae: individual (Cassiopeia A)Astronomy and Astrophysicsshock wavesCassiopeia ASupernovaSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

2011

The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.

Solar SystemField (physics)media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmagnetic fieldCosmic rayHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Settore FIS/05 - Astronomia E AstrofisicaShadowAstrophysics::Solar and Stellar AstrophysicsInterplanetary magnetic fieldcosmic raySolar and Stellar Astrophysics (astro-ph.SR)media_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCosmic Rays Gamma Sources Extended Air Showers Solar windMagnetic fieldSolar windAstrophysics - Solar and Stellar Astrophysicssolar windSpace and Planetary ScienceSkyPhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

2019

The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma-rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma-rays below 200 GeV have been observed by Fermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in the TeV range come from the HAWC observations, however, outside the solar minimum. The ARGO-YBJ data set has been used to search for sub-TeV/TeV gamma-rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitab…

Solar minimumSun: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayastroparticle physics; cosmic rays; gamma rays: general; Sun: general7. Clean energy01 natural sciencesAtmospherecosmic rays0103 physical sciencesgeneral [Sun]010303 astronomy & astrophysicsArgocosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysics010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyastroparticle physicAstronomy and Astrophysicsgamma rays: general13. Climate actionSpace and Planetary Scienceastroparticle physicsHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenageneral [gamma rays]
researchProduct