Search results for "Cosmological"
showing 10 items of 120 documents
Induced gravity and the attractor dynamics of dark energy/dark matter
2010
Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotica…
Light majoron cold dark matter from topological defects and the formation of boson stars
2019
We show that for a relatively light majoron ($\ll 100 $ eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.
Relativistic second-order perturbations of the Einstein-de Sitter universe
1998
We consider the evolution of relativistic perturbations in the Einstein-de Sitter cosmological model, including second-order effects. The perturbations are considered in two different settings: the widely used synchronous gauge and the Poisson (generalized longitudinal) one. Since, in general, perturbations are gauge dependent, we start by considering gauge transformations at second order. Next, we give the evolution of perturbations in the synchronous gauge, taking into account both scalar and tensor modes in the initial conditions. Using the second-order gauge transformation previously defined, we are then able to transform these perturbations to the Poisson gauge. The most important feat…
Nonminimal dark sector physics and cosmological tensions
2019
We explore whether non-standard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are an interaction between the dark matter and dark energy components, and a dark energy equation of state $w$ different from that of the canonical cosmological constant $w=-1$. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder $H_0$ measurements of Riess et al. (R19), as well …
On the carrier of inertia
2018
A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum's physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism shar…
Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory
2019
With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…
New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological li…
2019
New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.
Dark radiation and interacting scenarios
2013
An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of…
Astrophysical constraints on extended gravity models
2015
We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.
Maxwell symmetries and some applications
2012
The Maxwell algebra is the result of enlarging the Poincar\'{e} algebra by six additional tensorial Abelian generators that make the fourmomenta non-commutative. We present a local gauge theory based on the Maxwell algebra with vierbein, spin connection and six additional geometric Abelian gauge fields. We apply this geometric framework to the construction of Maxwell gravity, which is described by the Einstein action plus a generalized cosmological term. We mention a Friedman-Robertson-Walker cosmological approximation to the Maxwell gravity field equations, with two scalar fields obtained from the additional gauge fields. Finally, we outline further developments of the Maxwell symmetries f…