Search results for "Cosmological"

showing 10 items of 120 documents

Neutrino and dark radiation properties in light of recent CMB observations

2013

Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoust…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesRadiacióHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsCosmologia010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsHubble ConstantCosmological modelCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionDark radiationChristian ministryNeutrinoBaryuon Acosutic-OscillationsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Model independent constraints on mass-varying neutrino scenarios

2009

Models of dark energy in which neutrinos interact with the scalar field supposed to be responsible for the acceleration of the Universe usually imply a variation of the neutrino masses on cosmological time scales. In this work we propose a parametrization for the neutrino mass variation that captures the essentials of those scenarios and allows one to constrain them in a model independent way, that is, without resorting to any particular scalar field model. Using WMAP 5 yr data combined with the matter power spectrum of SDSS and 2dFGRS, the limit on the present value of the neutrino mass is m(0) equivalent to m(nu)(z = 0) 0), totally consistent with no mass variation. These stringent bounds…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyAccelerating UniverseCosmology and Nongalactic Astrophysics (astro-ph.CO)Microwave Background Anisotropiesmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsCosmological constant01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPower-SpectrumNeutrino oscillation010303 astronomy & astrophysicsmedia_commonPhysicsMatter010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::PhenomenologyFísicaHubble-Space-TelescopeDark EnergyCMB cold spotCosmological ConstantUniverseHigh Energy Physics - PhenomenologySupernovaeDark energyHigh Energy Physics::ExperimentNeutrinoScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Status of Light Sterile Neutrino Searches

2020

A number of anomalous results in short-baseline oscillation may hint at the existence of one or more light sterile neutrino states in the eV mass range and have triggered a wave of new experimental efforts to search for a definite signature of oscillations between active and sterile neutrino states. The present paper aims to provide a comprehensive review on the status of light sterile neutrino searches in mid-2019: we discuss not only the basic experimental approaches and sensitivities of reactor, source, atmospheric, and accelerator neutrino oscillation experiments but also the complementary bounds arising from direct neutrino mass experiments and cosmological observations. Moreover, we r…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBibliographyddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Cosmological modelHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentAtmospheric neutrinoNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology with a very light Lμ − Lτ gauge boson

2019

In this paper, we explore in detail the cosmological implications of an abelian L − L gauge extension of the Standard Model featuring a light and weakly coupled Z′. Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured and predicted values of the muon’s anomalous magnetic moment, (g − 2) , as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z′ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significa…

Nuclear and High Energy PhysicsParticle physicscosmological modelZ': couplingPopulationNeutrino decoupling01 natural sciences7. Clean energygauge boson: abeliansymbols.namesakeradiation: density0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityenergy: densityNeutrino Physics010306 general physicseducationPhysicsGauge bosoneducation.field_of_studyMuonHubble constantAnomalous magnetic dipole momentspace-time: expansionmuon: magnetic moment010308 nuclear & particles physicsCoupling (probability)Cosmology of Theories beyond the SMHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard Modelsymbolslcsh:QC770-798Neutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]neutrino: decouplingAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of High Energy Physics
researchProduct

Dark radiation and interacting scenarios

2013

An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of…

Nuclear and High Energy PhysicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterCosmological parametersCosmic background radiationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadiacióPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAxionTelescopeDigital sky surveyPhysicsCosmologiaHubble constant010308 nuclear & particles physicsSpectral densityMicrowave background anisotropiesHigh Energy Physics - Phenomenology13. Climate actionDark radiationConstraintssymbolsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Do we have any hope of detecting scattering between dark energy and baryons through cosmology?

2020

We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the Cosmic Microwave Background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections $\sigma_{xb} \sim {\cal O}({\rm b})$, which are generically excluded by non-cosmological probes such as col…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundCosmic background radiationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)cosmic background radiationAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologycosmic background radiation cosmological parameters cosmology observations dark energy large-scale structure of UniverseHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencescosmological parametersdark energy010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsEquation of state (cosmology)Matter power spectrumSpectral densityAstronomy and AstrophysicsCosmic varianceHigh Energy Physics - Phenomenologyobservations13. Climate actionSpace and Planetary ScienceDark energylarge-scale structure of UniversecosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

2020

The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via $u_\chi =\frac{\sigma_0}{\sigma_{Th}}\left(\frac{m_\chi}{100 \text{GeV}}\right)^{-1}$, is $u_\chi\leq3.34 \cdot 10^{-4}$, arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly …

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanckWeak gravitational lensingneutrino propertiesPhysicsdark matter theory010308 nuclear & particles physicsAstronomy and AstrophysicsCoupling (probability)Massless particleHigh Energy Physics - Phenomenologyparticle physics-cosmology connectioncosmological perturbation theorysymbolsNeutrinoHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observational constraints on decoupled hidden sectors

2016

We consider an extension of the Standard Model with a singlet sector consisting of a real (pseudo)scalar and a Dirac fermion coupled with the Standard Model only via the scalar portal. We assume that the portal coupling is weak enough for the singlet sector not to thermalize with the Standard Model allowing the production of singlet particles via the freeze-in mechanism. If the singlet sector interacts with itself sufficiently strongly, it may thermalize within itself, resulting in dark matter abundance determined by the freeze-out mechanism operating within the singlet sector. We investigate this scenario in detail. In particular, we show that requiring the absence of inflationary isocurva…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterScalar (mathematics)FOS: Physical sciencesParameter space114 Physical sciences01 natural sciencesStandard Modeldecouplingsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)ABELL 38270103 physical sciencesSinglet state010306 general physicsdark matter abundanceInflation (cosmology)PhysicsINTERACTING DARK-MATTERta114010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyextensions of the Standard ModelHidden sectorHigh Energy Physics - Phenomenologysinglet sectorCOSMOLOGICAL SIMULATIONSDirac fermionGALAXY CLUSTER 1E-0657-56symbols3.5 KEV LINEINTERACTION CROSS-SECTIONAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

New cosmological bounds on hot relics: Axions $\&$ Neutrinos

2020

Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyze two different thermal processes within a realistic mixed hot-dark-matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel we derive our most constraining bounds on the hot relic masses $m_a < 7.46$ eV and $\sum m_��< 0.114$ eV both at 95 per cent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions and remaining in the range of validity of the chira…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectDark matterCosmic background radiationFOS: Physical sciencescosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations;7. Clean energy01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences010306 general physicsAxionmedia_commonPhysics010308 nuclear & particles physicsHot dark matterHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsUniverseHigh Energy Physics - Phenomenology13. Climate actionSpace and Planetary ScienceStrong CP problemNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

How to relax the cosmological neutrino mass bound

2019

We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, $N_{\mathrm{eff}}$, and the neutrino mass, $m_{\nu}$. Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out cle…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicscosmological parameters from LSS01 natural sciencesCosmologyMomentumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)cosmological0103 physical sciencesPhysicsCOSMIC cancer database010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::Phenomenologycosmological parameters from CMBRAstronomy and AstrophysicsObservableMarkov chain Monte Carloneutrino masses from cosmologyHigh Energy Physics - Phenomenologyparameters from CMBRsymbolsHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct