Search results for "Cosmology: observations"

showing 8 items of 18 documents

CODEX Weak Lensing Mass Catalogue and implications on the mass-richness relation

2021

The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 = \alpha \mu + \beta$, with $\mu = \ln (M_{200c}/M_{\mathrm{piv}})$, and $M_{\mathrm{piv}} = 10^{14.81} M_{\odot}$. We find a slope $\alpha = 0.49^{+0.20}_{-0.15}$, normalization $ \exp(\beta) = 84.0^{+9.2}_{-14.8}$ and $\sigma_{\ln \lambda | \mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sun…

COSMOLOGICAL CONSTRAINTSCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLambdaPROFILE01 natural sciences114 Physical sciencesgravitational lensing: weakMAXBCGweak [gravitational lensing]0103 physical sciencesLARGE-SCALE STRUCTUREclusters: general [galaxies]PROBE010303 astronomy & astrophysicsWeak gravitational lensingGalaxy clusterLOCUSSPhysicsTEMPERATURE RELATION010308 nuclear & particles physicsAstronomy and Astrophysicsobservations [cosmology]RedshiftREDUCTIONSpace and Planetary Sciencegravitational lensing: weak; galaxies: clusters: general; cosmology: observationsgalaxies: clusters: generalcosmology: observationsGIANTSGALAXY CLUSTERS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION

2016

arXiv:1601.03668v1

statistical [Methods]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of universeFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesMethods statisticalGalaxies: distances and redshiftsMethods: data analysis0103 physical sciencesdistances and redshifts [Galaxies]observations [Cosmology]data analysis [Methods]010303 astronomy & astrophysicsMethods: statisticalAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsCosmology: observationsFísicaAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

2005

We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050…

010504 meteorology & atmospheric sciencesgamma rays: burstsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsJet (particle physics)Astrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]gamma rays: individual: GRB 0509040103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhotometric redshiftPhysicsCOSMIC cancer database[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Star formationAstrophysics (astro-ph)Astronomy and Astrophysicsearly UniverseLight curveRedshiftAfterglowSpace and Planetary Sciencecosmology: observationsGamma-ray burst
researchProduct

New cosmological bounds on hot relics: Axions $\&amp;$ Neutrinos

2020

Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyze two different thermal processes within a realistic mixed hot-dark-matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel we derive our most constraining bounds on the hot relic masses $m_a &lt; 7.46$ eV and $\sum m_��&lt; 0.114$ eV both at 95 per cent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions and remaining in the range of validity of the chira…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectDark matterCosmic background radiationFOS: Physical sciencescosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations;7. Clean energy01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences010306 general physicsAxionmedia_commonPhysics010308 nuclear & particles physicsHot dark matterHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsUniverseHigh Energy Physics - Phenomenology13. Climate actionSpace and Planetary ScienceStrong CP problemNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The miniJPAS survey: a preview of the Universe in 56 colours

2021

Full list of authors: Bonoli, S.; Marín-Franch, A.; Varela, J.; Vázquez Ramió, H.; Abramo, L. R.; Cenarro, A. J.; Dupke, R. A.; Vílchez, J. M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Hernández-Monteagudo, C.; López-Sanjuan, C.; Muniesa, D. J.; Civera, T.; Ederoclite, A.; Hernán-Caballero, A.; Marra, V.; Baqui, P. O.; Cortesi, A.; Cypriano, E. S.; Daflon, S.; de Amorim, A. L.; Díaz-García, L. A.; Diego, J. M.; Martínez-Solaeche, G.; Pérez, E.; Placco, V. M.; Prada, F.; Queiroz, C.; Alcaniz, J.; Alvarez-Candal, A.; Cepa, J.; Maroto, A. L.; Roig, F.; Siffert, B. B.; Taylor, K.; Benitez, N.; Moles, M.; Sodré, L.; Carneiro, S.; Mendes de Oliveira, C.; Abdalla, E.; Angulo, R. E.; Apari…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectFOS: Physical sciencesAstrophysicsastronomical databases: miscellaneousSurveyslaw.inventionPhotometry (optics)Telescopetechniques: photometricExtended Groth StripsurveysObservatorylaw[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]observations [Cosmology]Instrumentation and Methods for Astrophysics (astro-ph.IM)stars: generalmedia_commonPhysicsgeneral [Stars]photometric [Techniques]Astronomy and AstrophysicsQuasargeneral [Galaxies]115 Astronomy Space sciencegalaxies: generalAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceSkyAstrophysics of Galaxies (astro-ph.GA)cosmology: observationsmiscellaneous [Astronomical databases][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Lyman break and ultraviolet-selected galaxies at z ̃ 1-I. Stellar populations from the ALHAMBRA survey

2013

We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the ultraviolet (UV) and the ALHAMBRA survey in the optical and near-infrared to analyse the physical properties of a sample of 1225 GALEX-selected Lyman break galaxies (LBGs) at 0.8 ≲ z ≲ 1.2 that are located in the COSMOS field. This is the largest sample of LBGs studied in this redshift range to date. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at z ̃ 1 are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, (Es(B - V)) ̃ 0.20. Owing to the selection criterion, LBGs at z ̃…

media_common.quotation_subjectLibrary scienceAstrophysics::Cosmology and Extragalactic Astrophysicsstar formation [Galaxies]high-redshift [Galaxies]ExcellenceAstrophysics::Solar and Stellar Astrophysicsobservations [Cosmology]Astrophysics::Galaxy Astrophysicsmedia_commonPhysicsGalaxies: star formationphotometry [Galaxies]Cosmology: observationsGalaxies: high-redshiftAstronomyGalaxies: evolutionAstronomy and AstrophysicsGalaxies: photometryevolution [Galaxies]Galaxygalaxies [Ultraviolet]Space and Planetary ScienceUltraviolet: galaxiesAstrophysics::Earth and Planetary AstrophysicsAdministration (government)
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms*

2010

We present multiwavelength observations of one of the most distant gamma-ray bursts detected so far, GRB080913. Based on these observations, we consider whether it could be classified as a short-duration GRB and discuss the implications for the progenitor nature and energy extraction mechanisms. Methods. Multiwavelength X-ray, near IR and millimetre observations were made between 20.7 h and ∼16.8 days after the event. Results. Whereas a very faint afterglow was seen at the 3.5m CAHA telescope in the nIR, the X-ray afterglow was clearly detected in both Swift and XMM-Newton observations. An upper limit is reported in the mm range. We have modeled the data assuming a collimated θ0 3◦ blast wa…

PhysicsRange (particle radiation)Event horizonAstrophysics (astro-ph)Cosmology: observationsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsRedshiftAfterglowphotometric [techniques]techniques: photometricSpace and Planetary ScienceGRB 090423MillimeterGamma-ray burstobservations [Cosmology]stars: gamma-ray bursts: individual: GRB 080913Energy (signal processing)gamma-ray bursts: individual: GRB 080913 [stars]
researchProduct