Search results for "Crack"
showing 10 items of 209 documents
Influence of Heat Treatment on Fatigue Crack Growth in Ti-6Al-4V Alloy
2011
The paper contains the results of experimental work carried out in order to analyse the initiation and propagation of fatigue cracks in Ti-6Al-4V titanium alloy. The tests were performed on plane specimens with the stress concentrators in form of one-sided sharp notches. The tested specimens were made of the oxygenated Ti-6Al-4V subjected to various variants of heat treatment.
Quantitative thermoelastic stress analysis by means of low-cost setups
2020
Abstract A low-cost Thermoelastic Stress Analysis (TSA) experimental setup is proposed which uses an ordinary micro-bolometer and in-house developed signal processing scripts. The setup is evaluated by analysing the thermoelastic signal from a tensile and a SENT specimen made of stainless steel AISI 304L, and the bolometer performances are compared with those of a state of the art photon detector. Signal processing is based on off-line cross-correlation, using a self-reference signal which is retrieved from the acquired thermal data. Procedures are in particular developed to recognise, quantify and correct errors due to spectral leakage and loss of streamed frames. The thermoelastic signal …
From fracture to damage mechanics: a behavior law for microcracked composites using the concept of crack opening mode
2010
International audience; Many studies have been carried out in order to build a coherent macroscopic behavior law for a composite containing microcracks. All of them are only partially coherent and none of them is complete. This study proposes a hyperelastic behavior law for a microcracked composite, respecting all the conditions associated with the damage activation/deactivation, stress/strain relation continuity, induced anisotropy and the Clausius–Duhem inequality. This approach is based on the definition of the Crack Opening Mode for Damage Mechanics as it exists in Fracture Mechanics.
A simple model for the calculation of the axial load-carrying capacity of corroded RC columns
2015
In the present paper, a simplified model is used to determine the axial load-carrying capacity of compressed short reinforced concrete columns subjected to corrosion processes. The model considers members with circular and square cross-sections and accounts for—cover spalling, —concrete core confinement induced by transverse steel reinforcement, —buckling of longitudinal reinforcing bars. Strength reduction in concrete cover and core due to cracking induced by rust formation, reduction of steel area in longitudinal bars and transverse stirrups due to general and pitting corrosion and loss of confinement pressure are considered. The load-carrying capacity and load-axial strain curves here ge…
Temporary Strengthening Technique of Marble Columns with Steel Wires and Wood Spars
2014
Granite, marble and heavy stone columns have been used in the architects from all the ages to answer to both aesthetical and structural requirements in ancient churches and historical buildings. Such materials offer great visual impact and have mechanical properties that allow their use in construction and to obtain bright and slender structures. Marble is a very high strength but brittle material. It often occur that marble or granite columns of historical building are cracked along their height due to external actions and the risk of buckling occurs. Because this kind of failure is sudden and very brittle in stone and rocks, an immediate strengthening of the columns is needed. Among e tem…
Strain field measurements in polycrystalline tantalum
2013
National audience; The unterstanding and the local quantification of surface strain distribution is a key element of crack initiation analysis. Experiments following up the local strain distribution have been carried out, based on the construction of several hundred micrometers wide strain maps ; and using gratings of regularly spaced micrometric markers deposited by lithography. The strain maps are computed using a specific routine, allowing to quantify the local strain distribution at the grain scale for different interrupted tensile loads.
Residual Stresses Induced by Cold Expansion of Adjacent and Cut-Out Holes
2012
Fatigue life of fastener holes can be enhanced via a cold-expansion process to introduce a compressive residual stress field around the hole edge and to reduce crack growth propagation. Considering that aerospace components contain multiple rows of holes, the present investigation focuses on the evaluation of the three-dimensional residual stress distribution in adjacent cold-expanded (CE) holes. The redistribution of residual stresses caused by a cut introduced between two adjacent holes was also investigated. Finite element (FE) analysis and experimental technique were used to assess the residual stress distribution in a 6082-T6 aluminum plate with two adjacent holes expanded sequentially…
The effect of alternating different water qualities on accumulation and leaching of solutes in a Mediterranean cracking soil
2002
The relevance of bypass flow on water flow, solute or pesticide transport is becoming increasingly recognized. Recent investigations proved that soil salinization may be influenced by bypass flow, i.e. the rapid transport of water and solutes via macropores and/or shrinkage cracks to subsoil and groundwater. This paper explores the role of bypass flow in the process of accumulation and leaching of solutes, as well as of sodium, in a Mediterranean cracking soil irrigated with saline/sodic waters. The results of bypass flow experiments performed on undisturbed soil cores showed that leaching of solutes occurred in concomitance with bypass fluxes when a low salinity solution was alternated wit…
The global cracking laws for a finite-element model of no-tension material
1992
Abstract For perfect no-tension materials (NRT) the validity of the local stability postulate of Drucker, well known in plasticity, has been assumed so far and utilized to derive the local cracking laws, which relate cracking strain states and stress states to each other. On this base a finite-element (FE) model with suitable constitutive behaviour for the single FE is presented. Classical FE approaches enforce the cracking laws at the Gauss points of the FEs. In this work it is shown that taking into account cracking strains, suitably modelled, over the whole domain of the FE and making use of an energy approach lead to general cracking laws describing the constitutive behaviour of the who…
Crack dynamics and crack surfaces in elastic beam lattices
1998
The dynamics of propagating cracks is analyzed in elastic two-dimensional lattices of beams. At early times, inertia effects and static stress enhancement combine so that the crack-tip velocity is found to behave as t1/7. At late times a minimal crack-tip model reproduces the numerical simulation results. With no disorder and for fast loading, a “mirror-mist-mirror” crack-surface pattern emerges. Introduction of disorder leads, however, to the formation of the “mirror-mist-hackle”–type interface typical in many experimental situations. Peer reviewed