Search results for "Cripto"

showing 10 items of 863 documents

Transcriptional Profiles and Stromal Changes Reveal Bone Marrow Adaptation to Early Breast Cancer in Association with Deregulated Circulating microRN…

2020

Abstract The presence of a growing tumor establishes a chronic state of inflammation that acts locally and systemically. Bone marrow responds to stress signals by expanding myeloid cells endowed with immunosuppressive functions, further fostering tumor growth and dissemination. How early in transformation the cross-talk with the bone marrow begins and becomes detectable in blood is unknown. Here, gene expression profiling of the bone marrow along disease progression in a spontaneous model of mammary carcinogenesis demonstrates that transcriptional modifications in the hematopoietic compartment occurred as early as preinvasive disease stages. The transcriptional profile showed downregulation…

0301 basic medicineCancer ResearchMyeloidStromal cellInflammationApoptosisBreast NeoplasmsBiologySettore MED/08 - Anatomia PatologicaCXCR403 medical and health sciencesMice0302 clinical medicineBone MarrowmedicineBiomarkers TumorTumor Cells CulturedAnimalsHumansCirculating MicroRNACell ProliferationMice Inbred BALB CInnate immune systemGene Expression ProfilingAcquired immune systemAdaptation PhysiologicalXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticHaematopoiesis030104 developmental biologymedicine.anatomical_structureOncologyTrascriptional profiles early brest cancer microRNAs030220 oncology & carcinogenesisCancer researchFemaleBone marrowmedicine.symptomStromal CellsTranscriptomeCancer research
researchProduct

Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer

2019

Metabolism reprogramming is considered a hallmark of cancer. The study of bladder cancer (BC) metabolism could be the key to developing new strategies for diagnosis and therapy. This work aimed to identify tissue and urinary metabolic signatures as biomarkers of BC and get further insight into BC tumor biology through the study of gene-metabolite networks and the integration of metabolomics and transcriptomics data. BC and control tissue samples (n = 44) from the same patients were analyzed by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance and microarrays techniques. Besides, urinary profiling study (n = 35) was performed in the same patients to identify a metabolomic profi…

0301 basic medicineCancer ResearchTaurinecancer biomarkersBiologycancer metabolic reprogramminglcsh:RC254-282ArticleTranscriptome03 medical and health scienceschemistry.chemical_compoundtranscriptomics0302 clinical medicineMetabolomicsmedicinemetabolic pathwaysTumor metabolomeBladder cancermedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmetabolomicsMetabolic pathway030104 developmental biologyOncologyBiochemistrychemistry030220 oncology & carcinogenesisbladder cancerCancer biomarkersDNA microarraytumor metabolome
researchProduct

Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcrip…

2020

Hypofractionated radiotherapy is the mainstay of the current treatment for glioblastoma. However, the efficacy of radiotherapy is hindered by the high degree of radioresistance associated with glioma stem cells comprising a heterogeneous compartment of cell lineages differing in their phenotypic characteristics, molecular signatures, and biological responses to external signals. Reconstruction of radiation responses in glioma stem cells is necessary for understanding the biological and molecular determinants of glioblastoma radioresistance. To date, there is a paucity of information on the longitudinal outcomes of hypofractionated radiation in glioma stem cells. This study addresses long-te…

0301 basic medicineCancer Researchmedicine.medical_treatmentCell150610Biologylcsh:RC254-282ArticleTranscriptome03 medical and health sciences0302 clinical medicineRadioresistanceGliomamedicineCell growthglioblastomamedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPhenotypeRadiation therapyradioresistance030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchglioma stem cellsStem cellhypofractionated radiationCancers
researchProduct

A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors

2021

Simple Summary Glioblastoma (GBM) is a highly aggressive and almost inevitably lethal brain tumor. Animal models for GBM are crucial to study how the tumor evolves in vivo and to test novel treatment options. Most currently available models are based on the transplantation of human GBM cells into mice with a defective immune system. However, this approach does not allow to study the contribution of immune cells to GBM growth and to test immunotherapies. Transplantation of murine GBM cells overcomes this limitation, however, up to now, only a limited number, which mostly do not mimic important characteristics of human GBM, have been available. Via in vivo passaging, we established a set of m…

0301 basic medicineCancer Researchmouse modelCentral nervous systemBrain tumorBiologylcsh:RC254-282GenomeArticleTranscriptome03 medical and health sciences0302 clinical medicineIn vivoGliomamedicinePTENsyngeneic cell lineglioblastomalcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasenervous system diseases030104 developmental biologymedicine.anatomical_structureOncologyCell culture030220 oncology & carcinogenesisCancer researchbiology.proteinCancers
researchProduct

Evaluation of in vivo and in vitro models of toxicity by comparison of toxicogenomics data with the literature.

2017

Toxicity affecting humans is studied by observing the effects of chemical substances in animal organisms (in vivo) or in animal and human cultivated cell lines (in vitro). Toxicogenomics studies collect gene expression profiles and histopathology assessment data for hundreds of drugs and pollutants in standardized experimental designs using different model systems. These data are an invaluable source for analyzing genome-wide drug response in biological systems. However, a problem remains that is how to evaluate the suitability of heterogeneous in vitro and in vivo systems to model the many different aspects of human toxicity. We propose here that a given model system (cell type or animal o…

0301 basic medicineCandidate geneCell typeDrug Evaluation PreclinicalBiologyBioinformaticsToxicogeneticsGeneral Biochemistry Genetics and Molecular BiologyIn vitroRats03 medical and health sciences030104 developmental biologyIn vivoToxicityHepatocytesAnimalsHumansToxicogenomicsTranscriptomeMolecular BiologyGeneFunction (biology)Cells CulturedMethods (San Diego, Calif.)
researchProduct

RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior

2020

The RBFOX1 gene (or A2BP1) encodes a splicing factor important for neuronal development that has been related to autism spectrum disorder and other neurodevelopmental phenotypes. Evidence from complementary sources suggests that this gene contributes to aggressive behavior. Suggestive associations with RBFOX1 have been identified in genome-wide association studies (GWAS) of anger, conduct disorder, and aggressive behavior. Nominal association signals in RBFOX1 were also found in an epigenome-wide association study (EWAS) of aggressive behavior. Also, variants in this gene affect temporal lobe volume, a brain area that is altered in several aggression-related phenotypes. In animals, this gen…

0301 basic medicineCandidate geneNeuroimagingRBFOX1Genome-wide association studyBiologyEpigenesis GeneticA2BP103 medical and health sciencesAll institutes and research themes of the Radboud University Medical Center0302 clinical medicineGeneticsmedicineAnimalsHumansPharmacology (medical)TranscriptomicsRBFOX1Genetic Association StudiesBiological PsychiatryRegulator genePharmacologyGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]AggressionGenetic Variationmedicine.diseasePhenotypeAnimal modelsAggressionPsychiatry and Mental health030104 developmental biologyNeurologyAutism spectrum disorderEpigeneticsRBFOX1 GeneRNA Splicing FactorsNeurology (clinical)medicine.symptom030217 neurology & neurosurgeryGenome-Wide Association Study
researchProduct

Preparing for Winter: The Transcriptomic Response Associated with Different Day Lengths in Drosophila montana

2016

The work has been supported by a Natural Environment Research Council studentship to D.J.P. and an Academy of Finland grant to M.K. (project 268214). At northern latitudes, the most robust cue for assessing the onset of winter is the shortening of day lengths. Many species use day length as a cue to increase their cold tolerance and/or enter into diapause, but little is known about changes in gene expression that occur under different day lengths. We investigate the gene expression changes associated with differences in light/dark cycles in Drosophila montana, a northerly distributed species with a strong adult photoperiodic reproductive diapause. To examine gene expression changes induced …

0301 basic medicineCandidate geneQH301 Biologymedia_common.quotation_subjectZoologyQH426 GeneticsInvestigationsDiapauseBiologyQH426-470photoperiodQH30103 medical and health sciencestranscriptomicsBotanyGeneticsAnimalsCluster Analysisgeeniekspressioskin and connective tissue diseasesQH426Molecular BiologyDrosophilaGenetics (clinical)Overwinteringmedia_commonRegulation of gene expressionphotoperiodismGene Expression Profilingta1184Chromosome MappingComputational BiologyMolecular Sequence Annotationbiology.organism_classificationoverwinteringGene expression profilingdiapauseGene Ontology030104 developmental biologyGene Expression Regulationgene expressionta1181DrosophilaFemaleSeasonsGene expressionsense organsReproductionTranscriptome
researchProduct

Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value.

2019

AbstractCaper (Capparis spinosa L.) is a xerophytic shrub cultivated for its flower buds and fruits, used as food and for their medicinal properties. Breeding programs and even proper taxonomic classification of the genus Capparis has been hampered so far by the lack of reliable genetic information and molecular markers. Here, we present the first genomic resource for C. spinosa, generated by transcriptomic approach and de novo assembly. The sequencing effort produced nearly 80 million clean reads assembled into 124,723 unitranscripts. Careful annotation and comparison with public databases revealed homologs to genes with a key role in important metabolic pathways linked to abiotic stress t…

0301 basic medicineCapparisAgricultural geneticsabiotic stressSAPsPlant geneticsScienceDrought toleranceSequence assemblyComputational biologyBiologyArticleTranscriptome03 medical and health sciences0302 clinical medicinefoodStress PhysiologicalEST-SSRGeneorphan cropPlant Proteinsde novo leaf transcriptomeMultidisciplinaryPlants MedicinalPhenylpropanoidAbiotic stressSettore BIO/02 - Botanica SistematicaCapparis spinosaGene Expression ProfilingCaper Capparis spinosa Codominant markers Transcriptome analysis Orphan cropQRfood and beveragesbiology.organism_classificationfood.foodCapparis spinosa L.DroughtsCapparis030104 developmental biologyNGSMedicineTranscriptome030217 neurology & neurosurgeryBiomarkersMetabolic Networks and PathwaysScientific reports
researchProduct

Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver

2018

Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0-1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects w…

0301 basic medicineCarcinogenesisApoptosismedicine.disease_causeBiochemistryAntioxidantsTranscriptome0302 clinical medicineCell SignalingAnimal CellsMedicine and Health SciencesCellular Stress ResponsesCultured Tumor CellsMultidisciplinaryCell DeathbiologyGinkgo bilobaTOR Serine-Threonine KinasesLiver NeoplasmsQRLiverOncologyCell Processes030220 oncology & carcinogenesisHepatocellular carcinomaMedicineBiological CulturesCellular TypesAnatomyResearch ArticleSignal TransductionCarcinoma HepatocellularNF-E2-Related Factor 2ScienceResearch and Analysis MethodsCell Line03 medical and health sciencesmedicineHumansCell ProliferationOncogenic SignalingPlant ExtractsBiology and Life SciencesGinkgo bilobaCell BiologyCell Culturesbiology.organism_classificationmedicine.diseaseOxidative Stress030104 developmental biologyCell cultureApoptosisCancer cellHepatocytesCancer researchHepatoma CellsTranscriptomeCarcinogenesisOxidative stressPLOS ONE
researchProduct

The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

2016

Gene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver of innovations . However, here we show that increased phenotypic plasticity after duplication plays a more major role than thought before in the origin of adaptations. We perform an exhaustive analysis of the transcriptional alterations of duplicated genes in the unicellular eukaryote Saccharomyces cerevisiae when challenged with five different environmental stresses. Analysis of the transcriptomes of yeast shows that gene duplication increases the transcriptional response to…

0301 basic medicineCell PlasticityEvolutionary biologySaccharomyces cerevisiaeQH426-470InvestigationsBiologyGenomeEvolution MolecularTranscriptome03 medical and health sciencesEvolution by gene duplicationGene DuplicationGene duplicationGeneticsAnimalsSelection GeneticTranscriptional profilesMolecular BiologyGenePhylogenyGenetics (clinical)GeneticsPhenotypic plasticityModels GeneticPlantsAdaptation Physiological030104 developmental biologyWhole-genome duplicatesSubfunctionalizationGenome FungalAdaptationGene functionSmall-scale duplicates
researchProduct