Search results for "Critical exponent"

showing 10 items of 141 documents

First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities

2022

AbstractWe study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation $$\begin{aligned} iu_t+\Delta u=\lambda |u|^p+\mu |\nabla u|^q+w(x),\quad t>0,\, x\in {\mathbb {R}}^N, \end{aligned}$$ i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where $$N\ge 1$$ N ≥ 1 , $$p,q>1$$ p , q > 1 , $$\lambda ,\mu \in {\mathbb {C}}$$ λ , μ ∈ C , $$\lambda \ne 0$$ λ ≠ 0 , and $$u(0,\cdot ), w\in L^1_{\mathrm{loc}}({\mathbb {R}}^N,{\mathbb {C}})$$ u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where $$\mu =0$$ μ = 0 and $$\mu \ne 0$$ μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In ea…

Settore MAT/05 - Analisi MatematicaApplied MathematicsGeneral MathematicsGlobal weak solutionNonlinear Schrödinger equationGeneral Physics and AstronomyCritical exponentZeitschrift für angewandte Mathematik und Physik
researchProduct

Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent

2006

Abstract In this work, we shall deal with the critical Sobolev isotropic Brownian flows on the sphere S d . Based on previous works by O. Raimond and LeJan and Raimond (see [O. Raimond, Ann. Inst. H. Poincare 35 (1999) 313–354] and [Y. LeJan, O. Raimond, Ann. of Prob. 30 (2002) 826–873], we prove that the associated flows are flows of homeomorphisms.

Sobolev exponentKolmogoroff modification theoremApplied MathematicsGeneral MathematicsEigenvectorIsotropyMathematical analysisSpherical representationHomeomorphismNon-Lipschitzian conditionSobolev spacesymbols.namesakeLaplace operatorMathematics::ProbabilityPoincaré conjecturesymbolsExponentIsotropic flowsLaplace operatorCritical exponentBrownian motionMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Nature of crossover from classical to Ising-like critical behavior

1998

We present an accurate numerical determination of the crossover from classical to Ising-like critical behavior upon approach of the critical point in three-dimensional systems. The possibility to vary the Ginzburg number in our simulations allows us to cover the entire crossover region. We employ these results to scrutinize several semi-phenomenological crossover scaling functions that are widely used for the analysis of experimental results. In addition we present strong evidence that the exponent relations do not hold between effective exponents.

Statistical Mechanics (cond-mat.stat-mech)CrossoverFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCover (topology)Critical point (thermodynamics)ExponentSoft Condensed Matter (cond-mat.soft)Ising modelStatistical physicsCritical exponentScalingCondensed Matter - Statistical MechanicsMathematicsPhysical Review E
researchProduct

Cross Correlations in Scaling Analyses of Phase Transitions

2008

Thermal or finite-size scaling analyses of importance sampling Monte Carlo time series in the vicinity of phase transition points often combine different estimates for the same quantity, such as a critical exponent, with the intent to reduce statistical fluctuations. We point out that the origin of such estimates in the same time series results in often pronounced cross-correlations which are usually ignored even in high-precision studies, generically leading to significant underestimation of statistical fluctuations. We suggest to use a simple extension of the conventional analysis taking correlation effects into account, which leads to improved estimators with often substantially reduced …

Statistical Mechanics (cond-mat.stat-mech)Monte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyStatistical fluctuationsDynamic Monte Carlo methodMonte Carlo method in statistical physicsStatistical physicsCritical exponentScalingCondensed Matter - Statistical MechanicsImportance samplingMonte Carlo molecular modelingMathematicsPhysical Review Letters
researchProduct

Finite-size scaling analysis of the ?4 field theory on the square lattice

1986

Monte-Carlo calculations are performed for the model Hamiltonian ℋ = ∑i[(r/2)Φ 2(i)+(u/4)/gF4(i)]+∑ (C/2)[Φ (i)−Φ(j)]2 for various values of the parametersr, u, C in the crossover region from the Ising limit (r→-∞,u+∞) to the displacive limit (r=0). The variableφ(i) is a scalar continuous spin variable which can lie in the range-∞<φ(i)<+∞, for each lattice site (i).φ(i) is a priori selected proportional to the single-site probability in our Monte Carlo algorithm. The critical line is obtained in very good agreement with other previous approaches. A decrease of apparent critical exponents, deduced from a finite-size scaling analysis, is attributed to a crossover toward mean-field values at t…

Statistical and Nonlinear PhysicsSquare latticesymbols.namesakeMean field theoryCritical lineQuantum mechanicsLattice (order)symbolsIsing modelHamiltonian (quantum mechanics)Critical exponentScalingMathematical PhysicsMathematicsJournal of Statistical Physics
researchProduct

Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain

2010

We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a …

Statistics and ProbabilityHigh Energy Physics - Theory[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]LogarithmIntegrable systemfacteurs de formemodèles intégrables[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesPower law[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th][PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Chain (algebraic topology)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesddc:550[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Limit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]010306 general physicsMathematical PhysicsCondensed Matter - Statistical MechanicsMathematical physicsPhysicsNonlinear Sciences - Exactly Solvable and Integrable SystemsStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]Massless particleHigh Energy Physics - Theory (hep-th)[ PHYS.COND.CM-SM ] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Thermodynamic limitfonctions de corélation[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Statistics Probability and UncertaintyExactly Solvable and Integrable Systems (nlin.SI)Critical exponent[ NLIN.NLIN-SI ] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]
researchProduct

Effective electrical conductivity of microstructural patterns of binary mixtures on a square lattice in the presence of nearest-neighbour interactions

2018

Abstract The effective conductivity and percolative behaviour of microstructural patterns of binary mixtures are studied. Microstructure patterns are not entirely random, but result from the presence of attractive or repulsive interactions and thermal fluctuations. The interactions of the particles with one another lead to the formation of correlations between particle positions, while thermal fluctuations weaken these correlations. A simple lattice model is used, where each site is occupied by a single particle, and interactions can occur only between the nearest neighbours. The Kawasaki algorithm is adopted to create 2D microstructure samples. The microstructure is treated as a continuous…

Statistics and ProbabilityMaterials scienceCondensed matter physicsThermal fluctuationsPercolationPercolation thresholdAtmospheric temperature rangeConductivityCondensed Matter Physics01 natural sciencesSquare lattice010305 fluids & plasmasmaterialsLattice modelEffective properties of heterogeneous0103 physical sciencesParticle010306 general physicsCritical exponentLattice model (physics)Physica A-Statistical Mechanics and Its Applications
researchProduct

On multi-scale percolation behaviour of the effective conductivity for the lattice model

2015

Macroscopic properties of heterogeneous media are frequently modelled by regular lattice models, which are based on a relatively small basic cluster of lattice sites. Here, we extend one of such models to any cluster's size kxk. We also explore its modified form. The focus is on the percolation behaviour of the effective conductivity of random two- and three-phase systems. We consider only the influence of geometrical features of local configurations at different length scales k. At scales accessible numerically, we find that an increase in the size of the basic cluster leads to characteristic displacements of the percolation threshold. We argue that the behaviour is typical of materials, w…

Statistics and ProbabilityPercolation critical exponentsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesRegular latticePercolation thresholdMulti-scale analysis; Percolation; Lattice model; Effective mediumConductivityCondensed Matter PhysicsLattice (order)Continuum percolation theoryStatistical physicsCondensed Matter - Statistical MechanicsMathematics
researchProduct

Critical phenomena at surfaces

1990

Abstract The presence of free surfaces adds a rich and interesting complexity to critical phenomena associated with phase transitions occurring in bulk materials. We shall review Monte Carlo computer simulation studies of surface critical behavior in simple cubic Ising- and XY-models with nearest-neighbor interactions J in the bulk and Js at the surface. These studies allow the identification of various critical exponents and critical amplitude ratios involving both the critical behavior of local quantities and of surface excess corrections to the bulk. We consider both the “ordinary” transition (surface criticality controlled by the bulk) and the “special transition” (a multicritical point…

Statistics and ProbabilityPhase transitionCondensed matter physicsCritical point (thermodynamics)Critical phenomenaMulticritical pointIsing modelStatistical physicsRenormalization groupCondensed Matter PhysicsScalingCritical exponentMathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct

Fisher Renormalization for Logarithmic Corrections

2008

For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at t…

Statistics and ProbabilityPhase transitionLogarithmStatistical Mechanics (cond-mat.stat-mech)Multiplicative functionFOS: Physical sciencesStatistical and Nonlinear PhysicsStatistical mechanicsRenormalizationIdeal (order theory)Statistics Probability and UncertaintyCritical exponentScalingCondensed Matter - Statistical MechanicsMathematical physicsMathematics
researchProduct