Search results for "Critical exponent"
showing 10 items of 141 documents
First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities
2022
AbstractWe study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation $$\begin{aligned} iu_t+\Delta u=\lambda |u|^p+\mu |\nabla u|^q+w(x),\quad t>0,\, x\in {\mathbb {R}}^N, \end{aligned}$$ i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where $$N\ge 1$$ N ≥ 1 , $$p,q>1$$ p , q > 1 , $$\lambda ,\mu \in {\mathbb {C}}$$ λ , μ ∈ C , $$\lambda \ne 0$$ λ ≠ 0 , and $$u(0,\cdot ), w\in L^1_{\mathrm{loc}}({\mathbb {R}}^N,{\mathbb {C}})$$ u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where $$\mu =0$$ μ = 0 and $$\mu \ne 0$$ μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In ea…
Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent
2006
Abstract In this work, we shall deal with the critical Sobolev isotropic Brownian flows on the sphere S d . Based on previous works by O. Raimond and LeJan and Raimond (see [O. Raimond, Ann. Inst. H. Poincare 35 (1999) 313–354] and [Y. LeJan, O. Raimond, Ann. of Prob. 30 (2002) 826–873], we prove that the associated flows are flows of homeomorphisms.
Nature of crossover from classical to Ising-like critical behavior
1998
We present an accurate numerical determination of the crossover from classical to Ising-like critical behavior upon approach of the critical point in three-dimensional systems. The possibility to vary the Ginzburg number in our simulations allows us to cover the entire crossover region. We employ these results to scrutinize several semi-phenomenological crossover scaling functions that are widely used for the analysis of experimental results. In addition we present strong evidence that the exponent relations do not hold between effective exponents.
Cross Correlations in Scaling Analyses of Phase Transitions
2008
Thermal or finite-size scaling analyses of importance sampling Monte Carlo time series in the vicinity of phase transition points often combine different estimates for the same quantity, such as a critical exponent, with the intent to reduce statistical fluctuations. We point out that the origin of such estimates in the same time series results in often pronounced cross-correlations which are usually ignored even in high-precision studies, generically leading to significant underestimation of statistical fluctuations. We suggest to use a simple extension of the conventional analysis taking correlation effects into account, which leads to improved estimators with often substantially reduced …
Finite-size scaling analysis of the ?4 field theory on the square lattice
1986
Monte-Carlo calculations are performed for the model Hamiltonian ℋ = ∑i[(r/2)Φ 2(i)+(u/4)/gF4(i)]+∑ (C/2)[Φ (i)−Φ(j)]2 for various values of the parametersr, u, C in the crossover region from the Ising limit (r→-∞,u+∞) to the displacive limit (r=0). The variableφ(i) is a scalar continuous spin variable which can lie in the range-∞<φ(i)<+∞, for each lattice site (i).φ(i) is a priori selected proportional to the single-site probability in our Monte Carlo algorithm. The critical line is obtained in very good agreement with other previous approaches. A decrease of apparent critical exponents, deduced from a finite-size scaling analysis, is attributed to a crossover toward mean-field values at t…
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
2010
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a …
Effective electrical conductivity of microstructural patterns of binary mixtures on a square lattice in the presence of nearest-neighbour interactions
2018
Abstract The effective conductivity and percolative behaviour of microstructural patterns of binary mixtures are studied. Microstructure patterns are not entirely random, but result from the presence of attractive or repulsive interactions and thermal fluctuations. The interactions of the particles with one another lead to the formation of correlations between particle positions, while thermal fluctuations weaken these correlations. A simple lattice model is used, where each site is occupied by a single particle, and interactions can occur only between the nearest neighbours. The Kawasaki algorithm is adopted to create 2D microstructure samples. The microstructure is treated as a continuous…
On multi-scale percolation behaviour of the effective conductivity for the lattice model
2015
Macroscopic properties of heterogeneous media are frequently modelled by regular lattice models, which are based on a relatively small basic cluster of lattice sites. Here, we extend one of such models to any cluster's size kxk. We also explore its modified form. The focus is on the percolation behaviour of the effective conductivity of random two- and three-phase systems. We consider only the influence of geometrical features of local configurations at different length scales k. At scales accessible numerically, we find that an increase in the size of the basic cluster leads to characteristic displacements of the percolation threshold. We argue that the behaviour is typical of materials, w…
Critical phenomena at surfaces
1990
Abstract The presence of free surfaces adds a rich and interesting complexity to critical phenomena associated with phase transitions occurring in bulk materials. We shall review Monte Carlo computer simulation studies of surface critical behavior in simple cubic Ising- and XY-models with nearest-neighbor interactions J in the bulk and Js at the surface. These studies allow the identification of various critical exponents and critical amplitude ratios involving both the critical behavior of local quantities and of surface excess corrections to the bulk. We consider both the “ordinary” transition (surface criticality controlled by the bulk) and the “special transition” (a multicritical point…
Fisher Renormalization for Logarithmic Corrections
2008
For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at t…