Search results for "Critical exponent"
showing 10 items of 141 documents
Monte Carlo study of surface critical behavior in the XY model.
1989
We have used Monte Carlo simulations to study the behavior of $L\ifmmode\times\else\texttimes\fi{}L\ifmmode\times\else\texttimes\fi{}D$ slabs containing classical spins which interact via nearest-neighbor $\mathrm{XY}$ coupling. The coupling constant ${J}_{S}$ for spins in the surface layer is fixed at $0.5J$. Finite-size scaling is used to analyze data for $D=59$ and to extract estimates for the surface critical exponents. We find that ${\ensuremath{\beta}}_{1}$ is in good agreement with theoretical predictions.
Monte Carlo simulation of many-arm star polymers in two-dimensional good solvents in the bulk and at a surface
1991
A Monte Carlo technique is proposed for the simulation of statistical properties of many-arm star polymers on lattices. In this vectorizing algorithm, the length of each arml is increased by one, step by step, from a starting configuration withl=1 orl=2 which is generated directly. This procedure is carried out for a large sample (e.g., 100,000 configurations). As an application, we have studied self-avoiding stars on the square lattice with arm lengths up tol max=125 and up tof=20 arms, both in the bulk and in the geometry where the center of the star is adsorbed on a repulsive surface. The total number of configurations, which behaves asN∼l γ G–1μ fl , whereμ=2.6386 is the usual effective…
Critical behavior of short range Potts glasses
1993
We study by means of Monte Carlo simulations and the numerical transfer matrix technique the critical behavior of the short rangep=3 state Potts glass model in dimensionsd=2,3,4 with both Gaussian and bimodal (±J) nearest neighbor interactions on hypercubic lattices employing finite size scaling ideas. Ind=2 in addition the degeneracy of the glass ground state is computed as a function of the number of Potts states forp=3, 4, 5 and compared to that of the antiferromagnetic ground state. Our data indicate a transition into a glass phase atT=0 ind=2 with an algebraic singularity, aT=0 transition ind=3 with an essential singularity of the form χ∼exp(const.T−2), and an algebraic singularity atT…
Abelian Powers and Repetitions in Sturmian Words
2016
Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79-95, 2011) proved that at every position of a Sturmian word starts an abelian power of exponent $k$ for every $k > 0$. We improve on this result by studying the maximum exponents of abelian powers and abelian repetitions (an abelian repetition is an analogue of a fractional power) in Sturmian words. We give a formula for computing the maximum exponent of an abelian power of abelian period $m$ starting at a given position in any Sturmian word of rotation angle $\alpha$. vAs an analogue of the critical exponent, we introduce the abelian critical exponent $A(s_\alpha)$ of a Sturmian word $s_\alpha$ of angle $\alpha$ as the quantity $A(s_\a…
Proper Time Flow Equation for Gravity
2004
We analyze a proper time renormalization group equation for Quantum Einstein Gravity in the Einstein-Hilbert truncation and compare its predictions to those of the conceptually different exact renormalization group equation of the effective average action. We employ a smooth infrared regulator of a special type which is known to give rise to extremely precise critical exponents in scalar theories. We find perfect consistency between the proper time and the average action renormalization group equations. In particular the proper time equation, too, predicts the existence of a non-Gaussian fixed point as it is necessary for the conjectured nonperturbative renormalizability of Quantum Einstein…
Critical behavior of a supersymmetric extension of the Ginzburg-Landau model
2011
We make a connection between quantum phase transitions in condensed matter systems, and supersymmetric gauge theories that are of interest in the particle physics literature. In particular, we point out interesting effects of the supersymmetric quantum electrodynamics upon the critical behavior of the Ginzburg-Landau model. It is shown that supersymmetry fixes the critical exponents, as well as the Landau-Ginzburg parameter, and that the model resides in the type II regime of superconductivity.
Medium-range interactions and crossover to classical critical behavior
1996
We study the crossover from Ising-like to classical critical behavior as a function of the range R of interactions. The power-law dependence on R of several critical amplitudes is calculated from renormalization theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interaction. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of R, so that the theoretical predictions could actually be …
Stochastic approach to highway traffic
2004
We analyze the characteristic features of jam formation on a circular one-lane road. We have applied an optimal velocity model including stochastic noise, where cars are treated as moving and interacting particles. The motion of N cars is described by the system of 2 N stochastic differential equations with multiplicative white noise. Our system of cars behaves in qualitatively different ways depending on the values of control parameters c (dimensionless density), b (sensitivity parameter characterising the fastness of relaxation), and α (dimensionless noise intensity). In analogy to the gas-liquid phase transition in supersaturated vapour at low enough temperatures, we observe three differ…
Nodal Solutions for Supercritical Laplace Equations
2015
In this paper we study radial solutions for the following equation $$\Delta u(x)+f (u(x), |x|) = 0,$$ where $${x \in {\mathbb{R}^{n}}}$$ , n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent $${2^{*} = \frac{2n}{n-2}}$$ . The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular gro…
Crystal structure and magnetism of Co(HPO3)⋅H2O : A novel layered compound of Co(II)
1990
Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al.