Search results for "Cross-diffusion"

showing 3 items of 3 documents

Analysis of a parabolic cross-diffusion population model without self-diffusion

2006

Abstract The global existence of non-negative weak solutions to a strongly coupled parabolic system arising in population dynamics is shown. The cross-diffusion terms are allowed to be arbitrarily large, whereas the self-diffusion terms are assumed to disappear. The last assumption complicates the analysis since these terms usually provide H 1 estimates of the solutions. The existence proof is based on a positivity-preserving backward Euler–Galerkin approximation, discrete entropy estimates, and L 1 weak compactness arguments. Furthermore, employing the entropy–entropy production method, we show for special stationary solutions that the transient solution converges exponentially fast to its…

Self-diffusioneducation.field_of_studyKullback–Leibler divergenceRelative entropyStrong cross-diffusionApplied MathematicsMathematical analysisPopulationLong-time behavior of solutionsWeak competitionArbitrarily largeCompact spaceExponential growthPopulation modelEntropy (information theory)Global-in-time existence of weak solutionseducationPopulation equationsAnalysisMathematicsJournal of Differential Equations
researchProduct

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model

2022

<p style='text-indent:20px;'>We investigate the formation of stationary patterns in the FitzHugh-Nagumo reaction-diffusion system with linear cross-diffusion terms. We focus our analysis on the effects of cross-diffusion on the Turing mechanism. Linear stability analysis indicates that positive values of the inhibitor cross-diffusion enlarge the region in the parameter space where a Turing instability is excited. A sufficiently large cross-diffusion coefficient of the inhibitor removes the requirement imposed by the classical Turing mechanism that the inhibitor must diffuse faster than the activator. In an extended region of the parameter space a new phenomenon occurs, namely the exis…

Cross-diffusion FitzHugh-Nagumo Turing instability out-of-phase patterns amplitude equationsApplied MathematicsDiscrete Mathematics and CombinatoricsSettore MAT/07 - Fisica MatematicaDiscrete and Continuous Dynamical Systems - B
researchProduct