Search results for "Cyano"

showing 10 items of 1058 documents

Phytoplankton assemblages respond differently to climate warming and eutrophication : A case study from Pyhäjärvi and Taihu

2016

Abstract Long-term monitoring data from two lakes located at different latitudes were used to test the hypothesis that phytoplankton communities respond differently to environmental changes (e.g., global warming and anthropogenic activities, mainly eutrophication). Lake Pyhajarvi (temperate area) and Lake Taihu (subtropical area) are both shallow and productive lakes. Presence/absence data indicated that phytoplankton taxa present did not change significantly in the two lakes over the last two decades. However, biomass data showed that dominance relationships of species changed in both lakes. Results of assemblage ordination indicated that climate change played a vital role in mediating phy…

0106 biological sciencesLake warmingClimate change010501 environmental sciencesAquatic ScienceCyanobacteriaglobal warming01 natural sciencesPlanktothrixSettore BIO/07 - ECOLOGIAPhytoplanktonTemperate climateDominance (ecology)14. Life underwaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesLake PyhäjärviEcologybiologyEcology010604 marine biology & hydrobiologyshallow lakesGlobal warming15. Life on landPlanktonbiology.organism_classificationeutrophicationLake Taihu13. Climate actionEnvironmental scienceta1181EutrophicationJournal of Great Lakes Research
researchProduct

Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave su…

2021

The authors acknowledge COST Action ES 1105 "CYANOCOST Cyanobacterial blooms and toxins in water resources: Occurrence impacts and management" and COST Action Global Change Biology ES 1201 NETLAKE -Networking Lake Observatories in Europe" for contributing to this study through networking and knowledge sharing with European experts in the field. We acknowledge the members of the Global Lake Ecological Observatory Network (GLEON) for their collaborative spirit and enthusiasm that inspired the grassroots effort of the EMLS. E.M. was supported by a grant from the Swiss State Secretariat for Education, Research and Innovation to Bas Ibelings and by supplementary funding from University of Geneva…

0106 biological sciencesTemperateAquatic Ecology and Water Quality Management010504 meteorology & atmospheric sciencesChlorophyll aCYANOBACTERIAL BLOOMSMediterraneanOceanography01 natural sciencesFilamentous cyanobacteriaPHYTOPLANKTON DYNAMICSKlimatforskningPhotosystem-IIClimate changePhytoplankton biomasschlorophyllTemperature anomalyPhytoplankton Dynamicsmedia_commonFilamentous CyanobacteriaEcologyplanktonTEMPERATEDissolved Organic-MatterPlan_S-Compliant_NOArtEutrophicationBiological Sciences6. Clean waterEuropekesäinternationalEUTROPHICATION1181 Ecology evolutionary biologyarticleslämpötilaGREEN-ALGAENatural SciencesLAKESSHALLOWklorofylliThermal stratificaitonClimate Researchmedia_common.quotation_subjectmultilake surveyCyanobacterial BloomsAquatic Sciencephytoplankton ; European lakes ; climate change ; large scale ; light ; stratification ; nutrientsjärvetstratificationHeat wavelimnologiaPHOTOSYSTEM-IISettore BIO/07 - ECOLOGIAddc:570Life Sciencebiomassa (ekologia)0105 earth and related environmental sciencesEkologiGreen-AlgaeWIMEKFILAMENTOUS CYANOBACTERIA010604 marine biology & hydrobiologyilmastonmuutoksetmikrolevätAquatische Ecologie en WaterkwaliteitsbeheerSurface temperatureLakesShallow13. Climate actionDISSOLVED ORGANIC-MATTER; CYANOBACTERIAL BLOOMS; PHYTOPLANKTON DYNAMICS; FILAMENTOUS CYANOBACTERIA; PHOTOSYSTEM-II; GREEN-ALGAE; LAKES; EUTROPHICATION; SHALLOW; TEMPERATEPhytoplanktonDISSOLVED ORGANIC-MATTERkerrostuneisuusHumanitiesvalo
researchProduct

Thallus Growth Stage and Geographic Origin Shape Microalgal Diversity in Ramalina farinacea Lichen Holobionts

2021

Lichen symbioses are microecosystems hosting many other living organisms besides the two major lichen symbionts (i.e., lichenized fungi [the mycobiont] and green microalgae or cyanobacteria [the photobiont]). Recent investigations evidenced that other fungi, non-photosynthetic bacteria, and microalgae co-inhabit within the lichen thalli, but their diversity and their roles are still underinvestigated. Here we present an ad hoc stratified sampling design and in-depth Illumina paired-end metabarcoding approach to explore microalgal diversity in lichen thalli of the model species Ramalina farinacea from different ecologies. Lichen thalli were surveyed according to three different sizes, and di…

0106 biological sciencesTrebouxiaCyanobacteriasymbiosimycobiontLichensmedia_common.quotation_subjectLichenPlant ScienceAquatic Sciencehigh-throughput sequencing; metabarcoding; mycobiont; photobiont; symbiosis; Trebouxia; Symbiosis; Ascomycota; Chlorophyta; Lichens; Microalgae010603 evolutionary biology01 natural sciencesRamalina farinaceaSymbiosisAscomycotaChlorophytaBotanyMicroalgaeLichenSymbiosismedia_commonbiology010604 marine biology & hydrobiologyhigh-throughput sequencingbiology.organism_classificationThallusHabitatmetabarcodingTrebouxiaphotobiontDiversity (politics)
researchProduct

Lake restoration influences nutritional quality of algae and consequently Daphnia biomass

2020

AbstractFood quality is one of the key factors influencing zooplankton population dynamics. Eutrophication drives phytoplankton communities toward the dominance of cyanobacteria, which means a decrease in the availability of sterols and long-chain polyunsaturated fatty acids (EPA and DHA). The effects of different restoration measures on the nutritional quality of the phytoplankton community and subsequent impacts on zooplankton biomass have rarely been considered. We analyzed the nutritional quality of phytoplankton in the eutrophic Lake Vesijärvi in southern Finland over a 37-year period, and studied the impacts of two restoration measures, biomanipulation and hypolimnetic aeration, on th…

0106 biological sciencesfreshwater food websTROPHIC TRANSFERDAPHNIArasvahapotsterols01 natural sciencesDaphniaPHYTOPLANKTONlakespopulation dynamicsravintoaineetLake VesijärviFinlandalgaeeducation.field_of_studyBiomanipulationbiologynutritional ecologybiomass (ecology)EcologyrehevöityminenplanktonvesiekosysteemitlaatuCladoceraravitsemuksellinen ekologiaSterolsPHOSPHORUSqualityEUTROPHICATIONNutritional ecology1181 Ecology evolutionary biologyAmino acidsravintoarvodieteticsrasvahappojailmastuskryptofyytitPopulationvesistöjen kunnostusFRESH-WATER HERBIVOREmakean veden ruokaverkotlevätaminohapotAquatic ScienceCyanobacteriajärvet010603 evolutionary biologyZooplanktonfatty acidssterolejaBIOMANIPULATIONAlgaeFISHFATTY-ACID CONTENTPhytoplanktonCryptophytesDominance (ecology)14. Life underwaterbiomassa (ekologia)Fatty acidseducationsyanobakteeritaerationnutritional valuesterolitamino acidsFreshwater food webs010604 marine biology & hydrobiologyfungirestoration of water systemsmikrolevätbiology.organism_classificationpopulaatiodynamiikkaLONGDaphnia13. Climate actionvesikirputEutrophicationravitsemusravintoverkot
researchProduct

Lichen communities on Populus   tremula are affected by the density of Picea   abies

2021

Questions Aspen (Populus tremula) is declining in the old‐growth forests of boreal Fennoscandia. This threatens the numerous taxa that are dependent on old aspens, including many epiphytic lichens. Potential methods to aid epiphytic lichens on aspen are centered around treatments which affect the density of Norway spruce (Picea abies). In this study, we investigated how epiphytic lichen communities on aspen are affected by the variation of spruce density in the immediate vicinity of the focal aspen. Location Southern boreal forests in Finland. Methods We recorded the occurrence of lichens from 120 aspens in 12 semi‐natural forest sites. We used spruce basal area as the measure for spruce de…

0106 biological scienceshaapaBiodiversityEcological succession01 natural sciencestiheysvanhat metsätboreal forestsLichenFinlandbiodiversitysienitiededensitygeography.geographical_feature_categoryEcologybiologyjäkälätEcologyTaigaesiintyminenOld-growth forestekologiasuccessionold growth forestsboreaalinen vyöhykeEuropean aspenNorway spruceboreal zoneold-growth forestsvuorovaikutuslichen communitiesEcology (disciplines)epiphytic lichenscyanolichensinteractionManagement Monitoring Policy and Lawlichen010603 evolutionary biologyred‐listed speciessuojelualueetoccurenceSouthern FinlandPopulus tremulaNature and Landscape ConservationgeographyCommunityPicea abiesPicea abies15. Life on landbiology.organism_classificationbiodiversiteettimycologyprotected areasmetsäkuusired-listed speciescommunity ecology010606 plant biology & botanyApplied Vegetation Science
researchProduct

A New Niche for Anoxygenic Phototrophs as Endoliths

2018

ABSTRACT Anoxygenic phototrophic bacteria (APBs) occur in a wide range of aquatic habitats, from hot springs to freshwater lakes and intertidal microbial mats. Here, we report the discovery of a novel niche for APBs: endoliths within marine littoral carbonates. In a study of 40 locations around Isla de Mona, Puerto Rico, and Menorca, Spain, 16S rRNA high-throughput sequencing of endolithic community DNA revealed the presence of abundant phylotypes potentially belonging to well-known APB clades. An ad hoc phylogenetic classification of these sequences enabled us to refine the assignments more stringently. Even then, all locations contained such putative APBs, often reaching a significant pro…

0301 basic medicineChloroflexi (phylum)030106 microbiologyCarbonatesFresh WaterCyanobacteriaApplied Microbiology and BiotechnologyMicrobial Ecology03 medical and health sciencescarbonateBacteria AnaerobicAlgaemicrobiomesBacterial ProteinsPhylogenetics[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyChlorophytaRNA Ribosomal 16SMicrobial matAnaerobiosisintertidalPhotosynthesisBacteriochlorophyllsPhylogenygeographygeography.geographical_feature_categoryEcologybiologyPhototrophEcologybioerosionCoral ReefsMicrobiotaBioerosionCoral reefChloroflexibiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsAnoxygenic photosynthesisPhototrophic ProcessesFood ScienceBiotechnology
researchProduct

Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import

2018

Abstract Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes…

0301 basic medicineChloroplastsClinical BiochemistryCyanobacteriaPhotosynthesisBiochemistry03 medical and health sciencesHomeostasisMagnesiumElectrochemical gradientMolecular BiologyIon TransportBacteria030102 biochemistry & molecular biologybiologyChemistrySynechocystisMembrane Transport ProteinsMembrane transportbiology.organism_classificationTransmembrane proteinChloroplast030104 developmental biologyMembraneThylakoidBiophysicsBiological Chemistry
researchProduct

Proton Leakage Is Sensed by IM30 and Activates IM30-Triggered Membrane Fusion

2020

The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding…

0301 basic medicineChloroplastsMembrane lipidsmembrane fusionMg2+CyanobacteriaThylakoidsCatalysisArticleVipp1Inorganic Chemistrylcsh:Chemistry03 medical and health sciencesMembrane Lipidsquartz crystal microbalanceProtein structureBacterial ProteinsPhysical and Theoretical ChemistryMg<sup>2+</sup>membrane bindingMolecular Biologylcsh:QH301-705.5SpectroscopyMembranes030102 biochemistry & molecular biologyChemistrypHOrganic ChemistrySynechocystisCD spectroscopyLipid bilayer fusionMembrane Proteinsfood and beveragesGeneral Medicinethylakoid membraneComputer Science ApplicationsChloroplastChloroplast stroma030104 developmental biologyMembranelcsh:Biology (General)lcsh:QD1-999CytoplasmThylakoidBiophysicsProtonsIM30Protein BindingInternational Journal of Molecular Sciences
researchProduct

Comparison of biocides, allelopathic substances and UV-C as treatments for biofilm proliferation on heritage monuments

2018

Abstract UV-C and biocide treatments are frequently used to treat historical monuments contaminated by autotrophic biofilms. In this study, the authors compare for the first time the efficacy of these treatments against microorganisms such as cyanobacteria and algae proliferating in the Vicherey church (Vicherey, Vosges Department, France). To identify the most environmentally friendly and also efficient method, an allelopathic treatment was also tested. Colorimetric and physiological measurements of treated biofilms were thus monitored for 6 months. Fungi growing on necrotic matter from treated biofilms were sampled and sequenced. With biocides, results showed incomplete eradication of bio…

0301 basic medicineCyanobacteriaArcheologyBiocideMaterials Science (miscellaneous)MicroorganismConservation010501 environmental sciencesPhotosynthesis01 natural sciences[ SDE ] Environmental Sciences03 medical and health sciencesAlgaeBotanyAutotrophComputingMilieux_MISCELLANEOUSSpectroscopyAllelopathy0105 earth and related environmental sciencesbiologyChemistryBiofilmbiology.organism_classification030104 developmental biologyChemistry (miscellaneous)[SDE]Environmental SciencesGeneral Economics Econometrics and FinanceJournal of Cultural Heritage
researchProduct

Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness

2017

Abstract Background Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable “enzymatic apparatus” to carry out their biotransformation. Therefore, determination of the ability of whole cells of select…

0301 basic medicineCyanobacteriaChalconeLightBioconversionlcsh:QR1-502PhotobioreactorBioengineeringBiologyAphanizomenonCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyCatalysisGas Chromatography-Mass Spectrometrylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundChalconesChalconeBiotransformationRegioselective bio-reductionOrganic chemistryBiotransformation010405 organic chemistryResearchDihydrochalconeStereoisomerismbiology.organism_classificationDihydrochalcone0104 chemical sciences030104 developmental biologychemistryBiochemistryBiocatalysisSweetening AgentsBiocatalysisOxidation-ReductionBiotechnologyMicrobial Cell Factories
researchProduct