Search results for "Cyclopamine"
showing 5 items of 5 documents
Targeting cancer stem cells and the tumor microenvironment
2015
Compelling evidence indicates that the survival and behavior of cancer stem cells (CSCs) are positively regulated by specific stimuli received from the tumor microenvironment, which dictates the maintenance of stemness, invasiveness, and protection against drug-induced apoptotic signals. CSCs are per se endowed with multiple treatment resistance capabilities, thus the eradication of CSC pools offers a precious strategy in achieving a long-term cancer remission. Numerous therapies, aimed at eradicating CSCs, have been elaborated such as: (i) selective targeting of CSCs, (ii) modulating their stemness and (iii) influencing the microenvironment. In this context, markers commonly exploited to i…
The hedgehog receptor patched is involved in cholesterol transport.
2011
International audience; BACKGROUND: Sonic hedgehog (Shh) signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement …
Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells.
2009
A number of previous studies documented the angiogenic potential of outgrowth endothelial cells in vitro and in vivo and provided evidence that therapeutic success could depend on coculture or coimplantation strategies. Thus, deeper insight into the molecular mechanisms underlying this pro-angiogenic effect of cocultures might provide new translational options for tissue engineering and regenerative medicine. One promising signaling pathway in bone repair involved in neoangiogenesis and bone formation is the sonic hedgehog (Shh) pathway. In this article, we focus on the effect of Shh on the formation of microvessel-like structures and osteoblastic differentiation in cocultures of primary os…
Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer.
2019
The sonic hedgehog (SHH) signaling pathway plays an integral role in the maintenance and progression of bladder cancer (BCa) and SHH inhibition may be an efficacious strategy for BCa treatment. We assessed an in-house human BCa tissue microarray and found that the SHH transcription factors, GLI1 and GLI2, were increased in disease progression. A panel of BCa cell lines show that two invasive lines, UM-UC-3 and 253J-BV, both express these transcription factors but UM-UC-3 produces more SHH ligand and is less responsive in viability to pathway stimulation by recombinant human SHH or smoothened agonist, and less responsive to inhibitors including the smoothened inhibitors cyclopamine and SANT-…
Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies.
2011
The morphogen sonic hedgehog (Shh) seems to mediate adult repair processes in bone regeneration and vascularisation. In this study we investigated the effects of Shh on co-cultures consisting of human primary osteoblasts and outgrowth endothelial cells in terms of angiogenic activation and vessel maturation in comparison to the treatment with the commonly used proangiogenic factor, VEGF. Both, stimulation with VEGF or Shh, leads to an increase in the formation of microvessel-like structures compared to untreated controls. In contrast to VEGF, proangiogenic effects by Shh could already be observed after 24 h of treatment. Nevertheless, after 14 days the angiogenic activity of OEC was compara…