Search results for "DAP"

showing 10 items of 3579 documents

Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent

2019

Wildlife inhabiting environments contaminated by radionuclides face putative detrimental effects of exposure to ionizing radiation, with biomarkers such as an increase in DNA damage and/or oxidative stress commonly associated with radiation exposure. To examine the effects of exposure to radiation on gene expression in wildlife, we conducted a de novo RNA sequencing study of liver and spleen tissues from a rodent, the bank vole Myodes glareolus. Bank voles were collected from the Chernobyl Exclusion Zone (CEZ), where animals were exposed to elevated levels of radionuclides, and from uncontaminated areas near Kyiv, Ukraine. Counter to expectations, we did not observe a strong DNA damage resp…

0106 biological sciences0301 basic medicineRodentDNA Repairmedicine.disease_cause01 natural sciencessäteilybiologiachemistry.chemical_compoundRadiation IonizingMyodes glareolusstable isotopepollutionaineenvaihduntaBeta oxidationradionuclides2. Zero hungerbiologyArvicolinaeFatty AcidsRadiation ExposureRNAseqBank voleMolecular AdaptationLiverimmuunijärjestelmäOriginal ArticleUkraineOxidation-ReductionmetsämyyräDNA damageDNA repair010603 evolutionary biologyMicrobiology03 medical and health sciencesImmunitybiology.animalGeneticsmedicineAnimalsEcology Evolution Behavior and SystematicsRadioisotopesFatty acid metabolismLipid metabolismDNAbiology.organism_classificationLipid MetabolismOxidative Stress030104 developmental biologychemistryChernobyl Nuclear Accident13. Climate actionImmune SystemRNAORIGINAL ARTICLESOxidative stressSpleenDNA DamageMutagens
researchProduct

Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits.

2016

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species - the great tit Parus major - at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), u…

0106 biological sciences0301 basic medicineSELECTIONZOOLOGIA[SDV]Life Sciences [q-bio]FLOWSOFTWARE01 natural sciencesmicrosatellitesBehavioral EcologyLOCAL ADAPTATIONParus majorComputingMilieux_MISCELLANEOUSeducation.field_of_studyLatitudeCLIMATE-CHANGEEcologyIsolation-by-distancelatitudePE&RCGedragsecologieWILD BIRD POPULATIONinternationalGenetic structureGene poolwinter severityPopulationAnimal Breeding and GenomicsBiologyPARUS-MAJOR010603 evolutionary biology03 medical and health sciencesPopulation genetic structureFokkerij en GenomicaMicrosatelliteseducationBiologyEcology Evolution Behavior and SystematicsLocal adaptationIsolation by distanceisolation-by-distance[SDV.GEN]Life Sciences [q-bio]/GeneticsGenetic diversityF-statisticsGenetic divergenceWinter severity030104 developmental biologyPARTIAL MIGRATIONF-statisticsNATAL DISPERSALRE-IMPLEMENTATIONWIAS570 Life sciences; biologyta1181Biological Journal of the Linnean Society
researchProduct

How many scales on the wings? A case study based on Colias crocea (Geoffroy, 1785) (Hexapoda: Lepidoptera, Pieridae)

2019

Abstract The covering by scales of the wings of Lepidoptera contributes to multiple functions that are critical for their survival and reproduction. In order to gain a better understanding about their distribution, we have exhaustively studied 4 specimens of Colias crocea (Geoffroy, 1785). We have quantified the sources of variability affecting scale density. The results indicate that the scale covering of butterfly wings may be remarkably heterogeneous, and that the importance of the sources of variability differs between forewings and hindwings. Thus, in forewing the greatest variability occurs between sectors, while in the hindwings it occurs between sides, with a higher density of scale…

0106 biological sciences0301 basic medicineScale (anatomy)Adaptive valueAnimal ScalesZoology010603 evolutionary biology01 natural sciencesPredationHexapodaLepidoptera genitalia03 medical and health sciencesAnimalsWings AnimalColias croceaEcology Evolution Behavior and SystematicsbiologyGeneral Medicinebiology.organism_classification030104 developmental biologyInsect ScienceButterflyFemaleButterfliesDevelopmental BiologyPieridaeArthropod Structure &amp; Development
researchProduct

Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata

2021

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of ‘Frappato’ grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the …

0106 biological sciences0301 basic medicineSomatic embryogenesisQH301-705.5Biology01 natural sciencesArticlePolyploidy03 medical and health sciencesGuard cellautopolyploidy grapevine molecular analysis ploidy variability somatic embryogenesis stomatal characteristicsSettore AGR/07 - Genetica AgrariaBotanyVitismolecular analysisGenetic variabilityBiology (General)Abiotic componentploidy variabilitystomatal characteristicsfungiautopolyploidyfood and beveragesGeneral Medicinesomatic embryogenesisgrapevineChloroplastPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologyShootPlant StomataAdaptationPloidyPlant Shoots010606 plant biology & botanyCells
researchProduct

Experimental approaches for testing if tolerance curves are useful for predicting fitness in fluctuating environments

2017

Most experimental studies on adaptation to stressful environments are performed under conditions that are rather constant and rarely ecologically relevant. Fluctuations in natural environmental conditions are ubiquitous and include for example variation in intensity and duration of temperature, droughts, parasite loads, and availability of nutrients, predators and competitors. The frequency and amplitude of many of these fluctuations are expected to increase with climate change. Tolerance curves are often used to describe fitness components across environmental gradients. Such curves can be obtained by assessing performance in a range of constant environmental conditions. In this perspectiv…

0106 biological sciences0301 basic medicineSpecies distributionlcsh:EvolutionClimate changeEnvironmental stressBiology010603 evolutionary biology01 natural sciencesEnvironmental stress03 medical and health sciencesAbundance (ecology)lcsh:QH540-549.5Tolerance curveslcsh:QH359-425Range (statistics)EconometricsClimate changeConstant and fluctuating environmentsEcology Evolution Behavior and SystematicssietokykysopeutuminenEcologyEcologyconstant and fluctuating environmentsBiotailmastonmuutoksetenvironmental stressSpecies distributionsconstant and fluctuating environmentstolerance curvesclimate changespecies distributions030104 developmental biologyta1181lcsh:EcologyAdaptationConstant (mathematics)ympäristönmuutokset
researchProduct

Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species.

2020

Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi-dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence,…

0106 biological sciences0301 basic medicineSympatryClimateNicheGenome InsectAdaptation BiologicalBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesddc:570AnimalsEcology Evolution Behavior and SystematicsLocal adaptationMutualism (biology)Phenotypic plasticityNatural selectionAntsBiological EvolutionHydrocarbonsAnimal CommunicationSympatry030104 developmental biologyEvolutionary biologySympatric speciationParallel evolutionJournal of evolutionary biologyREFERENCES
researchProduct

Disentangling structural genomic and behavioural barriers in a sea of connectivity

2019

18 pages, 4 tables, 3 figures.-- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

0106 biological sciences0301 basic medicineSympatryReproductive IsolationChromosomal rearrangementsPopulation010603 evolutionary biology01 natural sciencesGene flow03 medical and health sciencesBehavioural traitsGeneticsAnimalsGadus14. Life underwaterSelection GeneticAdaptationeducationEcology Evolution Behavior and Systematicseducation.field_of_studySympatric divergencebiologyGenetic DriftHomozygoteGenetic VariationReproductive isolationbiology.organism_classificationSpecial Issue on the Role of Genomic Structural Variants in Adaptation and DiversificationGene flowGenetic divergenceSympatrySpecial Issue: The Role of Genomic Structural Variants in Adaptation and Diversification030104 developmental biologyGadus morhuaSympatric speciationEvolutionary biologyAtlantic codChromosome InversionGenetic FitnessAtlantic cod
researchProduct

Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

2017

Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…

0106 biological sciences0301 basic medicineTFs transcription factorsOverexpressionBiologíaBiFC bimolecular fluorescence complementationClinical BiochemistryCell Culture TechniquesTobacco BY-2 cells01 natural sciencesBiochemistryTBY-2 tobacco bright yellow-2DTT 14-dithiothreitolBimolecular fluorescence complementationThioredoxinsGene Expression Regulation PlantTrx thioredoxinlcsh:QH301-705.5GFP green fluorescent proteinlcsh:R5-920biologyProliferating cell nuclear antigen (PCNA)Cell cycleGlutathione3. Good healthCell biologyMitochondriaNTR NADPH thioredoxin reductaseProtein TransportDEM diethyl maleateRT-qPCR Reverse transcription quantitative polymerase chain reactionThioredoxinlcsh:Medicine (General)Oxidation-ReductionAMS 4-acetamido-4-maleimidylstilbene-22-disulfonic acidResearch PaperPCNA proliferating cell nuclear antigenOex overexpressingCell cycleNucleusThioredoxin o103 medical and health sciencesROS reactive oxygen speciesDownregulation and upregulationProliferating Cell Nuclear AntigenTobaccoDAPI 46-diamidine-2-phenylindolmCBM monochlorobimaneCellular compartmentCell NucleusCell growthOrganic ChemistryBotánicaPeasMolecular biologyYFP yellow fluorescent proteinProliferating cell nuclear antigenTBS Tris-buffered salineOD optical density030104 developmental biologylcsh:Biology (General)Cell cultureRNA reactive nitrogen speciesbiology.proteinPrx peroxiredoxinBSA bovine serum albumin010606 plant biology & botanyRedox biology
researchProduct

Variable crab camouflage patterns defeat search image formation.

2021

Understanding what maintains the broad spectrum of variation in animal phenotypes and how this influences survival is a key question in biology. Frequency dependent selection – where predators temporarily focus on one morph at the expense of others by forming a “search image” – can help explain this phenomenon. However, past work has never tested real prey colour patterns, and rarely considered the role of different types of camouflage. Using a novel citizen science computer experiment that presented crab “prey” to humans against natural backgrounds in specific sequences, we were able to test a range of key hypotheses concerning the interactions between predator learning, camouflage and mor…

0106 biological sciences0301 basic medicineTime FactorsComputer scienceQH301-705.5BrachyuraBehavioural ecologyFrequency-dependent selectionMedicine (miscellaneous)ColorVariation (game tree)010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlePredationtaskuravut03 medical and health sciencesDisruptive colorationCitizen scienceAnimalsHumansexperimental evolutionBiology (General)muuntelu (biologia)PredatorEcosystemsuojaväriMechanism (biology)Pigmentationbehavioural ecologyAdaptation Physiological030104 developmental biologyPhenotypeVideo GamesExperimental evolutionEvolutionary biologyCamouflagePattern Recognition PhysiologicalPredatory BehaviorfenotyyppiGeneral Agricultural and Biological SciencesColor PerceptionCommunications biology
researchProduct

Adaptation to environmental stress at different timescales

2020

Environments are changing rapidly, and to cope with these changes, organisms have to adapt. Adaptation can take many shapes and occur at different speeds, depending on the type of response, the trait, the population, and the environmental conditions. The biodiversity crisis that we are currently facing illustrates that numerous species and populations are not capable of adapting with sufficient speed to ongoing environmental changes. Here, we discuss current knowledge on the ability of animals and plants to adapt to environmental stress on different timescales, mainly focusing on thermal stress and ectotherms. We discuss within-generation responses that can be fast and induced within minute…

0106 biological sciences0301 basic medicineTime FactorsEnvironmental changeAcclimatizationClimate Changemedia_common.quotation_subjectPopulationBiodiversity010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEpigenesis Genetic03 medical and health sciencesHistory and Philosophy of ScienceStress PhysiologicalevolutionAnimalsHumansEcosystemeducationEcosystemPlant Physiological Phenomenamedia_commoneducation.field_of_studybusiness.industryGeneral NeuroscienceEnvironmental resource managementEnvironmental ExposurePlants15. Life on landAdaptation Physiologicalenvironmental stress030104 developmental biology13. Climate actionEctothermplasticityTraitEnvironmental sciencePsychological resilienceAdaptationbusinesstrangenerational effects
researchProduct