Search results for "DASH"
showing 10 items of 44 documents
Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures
2016
The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level.
Fractional differential equations and related exact mechanical models
2013
Creep and relaxation tests, performed on various materials like polymers, rubbers and so on are well-fitted by power-laws with exponent β ∈ [0, 1] (Nutting (1921), Di Paola et al. (2011)). The consequence of this observation is that the stress-strain relation of hereditary materials is ruled by fractional operators (Scott Blair (1947), Slonimsky (1961)). A large amount of researches have been performed in the second part of the last century with the aim to connect constitutive fractional relations with some mechanical models by means of fractance trees and ladders (see Podlubny (1999)). Recently, Di Paola and Zingales (2012) proposed a mechanical model that corresponds to fractional stress-…
Relation Between Scouting Combine and Game Performance Among Defensive National Players in the Canadian Football League.
2021
ABSTRACT Pincivero, DM and Vandeweerd, J. Relation between scouting combine and game performance among defensive national players in the Canadian Football League. J Strength Cond Res 35(12S): S5-S10, 2021-The objective of this study was to examine the relation between fitness testing and draft order on professional performance of defensive national players in the Canadian Football League. A retrospective analysis (2006-2019) was completed for all subjects at the National Scouting Combine (NSC) and included height, body mass, 40 yard (38 m) dash, bench press, vertical jump, broad jump, and the shuttle run. A compiled variable for all NSC results was derived by calculating averaged Z-scores (…
The Multiscale Stochastic Model of Fractional Hereditary Materials (FHM)
2013
Abstract In a recent paper the authors proposed a mechanical model corresponding, exactly, to fractional hereditary materials (FHM). Fractional derivation index 13 E [0,1/2] corresponds to a mechanical model composed by a column of massless newtonian fluid resting on a bed of independent linear springs. Fractional derivation index 13 E [1/2, 1], corresponds, instead, to a mechanical model constituted by massless, shear-type elastic column resting on a bed of linear independent dashpots. The real-order of derivation is related to the exponent of the power-law decay of mechanical characteristics. In this paper the authors aim to introduce a multiscale fractance description of FHM in presence …
Experimental demonstration of fractional order differentiation using a long-period grating-based in-fiber modal interferometer
2016
In this work we demonstrate both, experimentally and theoretically, that a long-period grating-based in-fiber modal interferometer can perform an all-optical arbitrary-order fractional differentiation. Experimentally, we fractionally differentiated to the 0.5th order a secant hyperbolic-like pulse of 23 ps time width provided by a 1039.5 nm emission wavelength modelocked fiber laser, with a chirp parameter of −30. An analytical expression relating the fractional order of differentiation n with the characteristics of the modal interferometer was also derived, with the purpose to simplify the design procedure. The proposal was corroborated also numerically. This device may find applications i…
Smart structures through nontraditional design of Tuned Mass Damper Inerter for higher control of base isolated systems
2020
Abstract This paper introduces a smart structure design through the definition of an innovative passive control strategy, referred to as New Tuned Mass Damper Inerter (New TMDI), coupled with a base isolation system (BI), to control displacements in base isolated structures under seismic excitations. The herein proposed New TMDI comprises a recently developed nontraditional Tuned Mass Damper (known as New TMD), in which a secondary mass system is connected to the base plate of the BI system by a spring and to the ground by a dashpot, and of an inerter device placed in parallel with the damper. An optimization procedure which minimizes the base displacement variance of the BI system, conside…
Nonlinear rocking of rigid blocks on flexible foundation: Analysis and experiments
2017
Abstract Primarily, two models are commonly used to describe rocking of rigid bodies; the Housner model, and the Winkler foundation model. The first deals with the motion of a rigid block rocking about its base corners on a rigid foundation. The second deals with the motion of a rigid block rocking and bouncing on a flexible foundation of distributed linear springs and dashpots (Winkler foundation). These models are two-dimensional and can capture some of the features of the physics of the problem. Clearly, there are additional aspects of the problem which may be captured by an enhanced nonlinear model for the base-foundation interaction. In this regard, what it is adopted in this paper is …
Travelling Panels Made of Viscoelastic Material
2013
In this chapter, our focus is to analyse the behaviour of moving panels using viscoelastic materials. As the reader will have noticed, all the models discussed in previous chapters have concerned the case of a purely elastic material. The deformation of an elastic material depends only on the applied forces; it has no explicit time dependence. Paper, however, is a more complicated material: it is viscoelastic. In addition to elastic properties, it has also time-dependent viscous properties, which cause the phenomena of creep and relaxation (see, e.g., Alava and Niskanen 2006). One of the simplest models for a viscoelastic solid is the Kelvin–Voigt model, which consists of a linear spring an…
Electrical analogous in viscoelasticity
2014
In this paper, electrical analogous models of fractional hereditary materials are introduced. Based on recent works by the authors, mechanical models of materials viscoelasticity behavior are firstly approached by using fractional mathematical operators. Viscoelastic models have elastic and viscous components which are obtained by combining springs and dashpots. Various arrangements of these elements can be used, and all of these viscoelastic models can be equivalently modeled as electrical circuits, where the spring and dashpot are analogous to the capacitance and resistance, respectively. The proposed models are validated by using modal analysis. Moreover, a comparison with numerical expe…
Fractional Tajimi–Kanai model for simulating earthquake ground motion
2014
The ground acceleration is usually modeled as a filtered Gaussian process. The most common model is a Tajimi–Kanai (TK) filter that is a viscoelastic Kelvin–Voigt unit (a spring in parallel with a dashpot) carrying a mass excited by a white noise (acceleration at the bedrock). Based upon the observation that every real material exhibits a power law trend in the creep test, in this paper it is proposed the substitution of the purely viscous element in the Kelvin Voigt element with the so called springpot that is an element having an intermediate behavior between purely elastic (spring) and purely viscous (dashpot) behavior ruled by fractional operator. With this choice two main goals are rea…