Search results for "DASH"

showing 10 items of 44 documents

Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures

2016

The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level.

Materials scienceasphalt mixtureStrategy and Managementcreep test0211 other engineering and technologies02 engineering and technologyfractional calculusPower lawcreep test.ViscoelasticityDashpot0203 mechanical engineering021105 building & constructionSettore ICAR/04 - Strade Ferrovie Ed AeroportiComposite materialviscoplasticityviscoelasticityCivil and Structural EngineeringBuilding constructionmechanical modelsViscoplasticityMechanicsmechanical modelFractional calculusfractional calculus asphalt mixture viscoelasticity viscoplasticity rheology mechanical models creep testfractional calculuNonlinear system020303 mechanical engineering & transportsCreepAsphaltrheologyTH1-9745
researchProduct

Fractional differential equations and related exact mechanical models

2013

Creep and relaxation tests, performed on various materials like polymers, rubbers and so on are well-fitted by power-laws with exponent β ∈ [0, 1] (Nutting (1921), Di Paola et al. (2011)). The consequence of this observation is that the stress-strain relation of hereditary materials is ruled by fractional operators (Scott Blair (1947), Slonimsky (1961)). A large amount of researches have been performed in the second part of the last century with the aim to connect constitutive fractional relations with some mechanical models by means of fractance trees and ladders (see Podlubny (1999)). Recently, Di Paola and Zingales (2012) proposed a mechanical model that corresponds to fractional stress-…

Mechanical systems Power-law description Fractional hereditary materials Discretized models Modal transformation.Differential equationFractional hereditary materialDiscretized modelMathematical analysisRelaxation (iterative method)Extension (predicate logic)Mechanical systems Power-law description Fractional hereditary materials Discretized modelsModal transformationDashpotMechanical systemMechanical systemComputational MathematicsComputational Theory and MathematicsCreepModeling and SimulationPower-law descriptionModal transformationLinear combinationRepresentation (mathematics)Settore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct

Relation Between Scouting Combine and Game Performance Among Defensive National Players in the Canadian Football League.

2021

ABSTRACT Pincivero, DM and Vandeweerd, J. Relation between scouting combine and game performance among defensive national players in the Canadian Football League. J Strength Cond Res 35(12S): S5-S10, 2021-The objective of this study was to examine the relation between fitness testing and draft order on professional performance of defensive national players in the Canadian Football League. A retrospective analysis (2006-2019) was completed for all subjects at the National Scouting Combine (NSC) and included height, body mass, 40 yard (38 m) dash, bench press, vertical jump, broad jump, and the shuttle run. A compiled variable for all NSC results was derived by calculating averaged Z-scores (…

Multi-stage fitness testCanadasportsApplied psychologyFootballFitness TestingPhysical Therapy Sports Therapy and RehabilitationGeneral MedicineLeagueAthletic PerformanceYardVertical jumpCanadian footballDashsports.sportJumpExercise TestHumansOrthopedics and Sports MedicinePsychologyRetrospective StudiesJournal of strength and conditioning research
researchProduct

The Multiscale Stochastic Model of Fractional Hereditary Materials (FHM)

2013

Abstract In a recent paper the authors proposed a mechanical model corresponding, exactly, to fractional hereditary materials (FHM). Fractional derivation index 13 E [0,1/2] corresponds to a mechanical model composed by a column of massless newtonian fluid resting on a bed of independent linear springs. Fractional derivation index 13 E [1/2, 1], corresponds, instead, to a mechanical model constituted by massless, shear-type elastic column resting on a bed of linear independent dashpots. The real-order of derivation is related to the exponent of the power-law decay of mechanical characteristics. In this paper the authors aim to introduce a multiscale fractance description of FHM in presence …

Multiscale FractanceRandom modelsStochastic modellingMathematical analysisModel parametersGeneral MedicineFractional HereditarinessDashpotFractional calculusMassless particleFractional DerivativesFractional Derivatives; Fractional Hereditariness; Multiscale Fractance; Random modelsFractional HereditarineCalculusExponentNewtonian fluidLinear independenceFractional DerivativeMathematicsProcedia IUTAM
researchProduct

Experimental demonstration of fractional order differentiation using a long-period grating-based in-fiber modal interferometer

2016

In this work we demonstrate both, experimentally and theoretically, that a long-period grating-based in-fiber modal interferometer can perform an all-optical arbitrary-order fractional differentiation. Experimentally, we fractionally differentiated to the 0.5th order a secant hyperbolic-like pulse of 23 ps time width provided by a 1039.5 nm emission wavelength modelocked fiber laser, with a chirp parameter of −30. An analytical expression relating the fractional order of differentiation n with the characteristics of the modal interferometer was also derived, with the purpose to simplify the design procedure. The proposal was corroborated also numerically. This device may find applications i…

Optical fiberCiencias FísicasPhase (waves)Physics::Optics02 engineering and technologyGratingMach–Zehnder interferometer01 natural sciencesFRACTIONAL DIFFERENTIATIONlaw.invention010309 optics020210 optoelectronics & photonicsOpticslawFiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFIBER OPTICSPhysicsbusiness.industryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)AstronomíaWavelengthLONG-PERIOD GRATINGbusinessMACH–ZEHNDERCIENCIAS NATURALES Y EXACTASOptics Communications
researchProduct

Smart structures through nontraditional design of Tuned Mass Damper Inerter for higher control of base isolated systems

2020

Abstract This paper introduces a smart structure design through the definition of an innovative passive control strategy, referred to as New Tuned Mass Damper Inerter (New TMDI), coupled with a base isolation system (BI), to control displacements in base isolated structures under seismic excitations. The herein proposed New TMDI comprises a recently developed nontraditional Tuned Mass Damper (known as New TMD), in which a secondary mass system is connected to the base plate of the BI system by a spring and to the ground by a dashpot, and of an inerter device placed in parallel with the damper. An optimization procedure which minimizes the base displacement variance of the BI system, conside…

Optimal designOptimal designComputer science02 engineering and technology01 natural sciencesDashpot010305 fluids & plasmaslaw.inventionDamperNontraditional layout0203 mechanical engineeringlawTuned mass damper0103 physical sciencesInerterGeneral Materials ScienceCivil and Structural EngineeringTuned Mass Damperbusiness.industryMechanical EngineeringBase-isolation systemWhite noiseStructural engineeringCondensed Matter PhysicsBase (topology)020303 mechanical engineering & transportsInerterMechanics of MaterialsBase isolationSettore ICAR/08 - Scienza Delle CostruzionibusinessMechanics Research Communications
researchProduct

Nonlinear rocking of rigid blocks on flexible foundation: Analysis and experiments

2017

Abstract Primarily, two models are commonly used to describe rocking of rigid bodies; the Housner model, and the Winkler foundation model. The first deals with the motion of a rigid block rocking about its base corners on a rigid foundation. The second deals with the motion of a rigid block rocking and bouncing on a flexible foundation of distributed linear springs and dashpots (Winkler foundation). These models are two-dimensional and can capture some of the features of the physics of the problem. Clearly, there are additional aspects of the problem which may be captured by an enhanced nonlinear model for the base-foundation interaction. In this regard, what it is adopted in this paper is …

Physics021110 strategic defence & security studiesbusiness.industry0211 other engineering and technologiesFoundation (engineering)Flexible foundationEquations of motion020101 civil engineeringContext (language use)02 engineering and technologyGeneral MedicineStructural engineeringDashpot0201 civil engineeringDamperContact forceNonlinear systemRocking motionEngineeringNonlinear contact modelImpactFlexible foundation; Nonlinear contact model; Rocking motion; EngineeringSettore ICAR/08 - Scienza Delle Costruzionibusiness
researchProduct

Travelling Panels Made of Viscoelastic Material

2013

In this chapter, our focus is to analyse the behaviour of moving panels using viscoelastic materials. As the reader will have noticed, all the models discussed in previous chapters have concerned the case of a purely elastic material. The deformation of an elastic material depends only on the applied forces; it has no explicit time dependence. Paper, however, is a more complicated material: it is viscoelastic. In addition to elastic properties, it has also time-dependent viscous properties, which cause the phenomena of creep and relaxation (see, e.g., Alava and Niskanen 2006). One of the simplest models for a viscoelastic solid is the Kelvin–Voigt model, which consists of a linear spring an…

PhysicsCreepDeformation (mechanics)Spring (device)Time derivativeMaterial derivativeRelaxation (physics)MechanicsViscoelasticityDashpot
researchProduct

Electrical analogous in viscoelasticity

2014

In this paper, electrical analogous models of fractional hereditary materials are introduced. Based on recent works by the authors, mechanical models of materials viscoelasticity behavior are firstly approached by using fractional mathematical operators. Viscoelastic models have elastic and viscous components which are obtained by combining springs and dashpots. Various arrangements of these elements can be used, and all of these viscoelastic models can be equivalently modeled as electrical circuits, where the spring and dashpot are analogous to the capacitance and resistance, respectively. The proposed models are validated by using modal analysis. Moreover, a comparison with numerical expe…

PhysicsNumerical AnalysisEigenvalues analysiEigenvalues analysis Fractional calculus Fractional capacitor Viscoelastic modelsApplied MathematicsModal analysisMathematical analysisFinite-difference time-domain methodViscoelastic modelFractional calculuDashpotViscoelasticityFractional calculuslaw.inventionMathematical OperatorsFractional capacitorSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaSpring (device)lawModeling and SimulationElectrical networkCalculusSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Fractional Tajimi–Kanai model for simulating earthquake ground motion

2014

The ground acceleration is usually modeled as a filtered Gaussian process. The most common model is a Tajimi–Kanai (TK) filter that is a viscoelastic Kelvin–Voigt unit (a spring in parallel with a dashpot) carrying a mass excited by a white noise (acceleration at the bedrock). Based upon the observation that every real material exhibits a power law trend in the creep test, in this paper it is proposed the substitution of the purely viscous element in the Kelvin Voigt element with the so called springpot that is an element having an intermediate behavior between purely elastic (spring) and purely viscous (dashpot) behavior ruled by fractional operator. With this choice two main goals are rea…

PhysicsPeak ground accelerationGround motionBuilding and ConstructionWhite noiseMechanicsGeotechnical Engineering and Engineering GeologyFree fieldViscoelasticityDashpotsymbols.namesakeAccelerationGeophysicsSpring (device)Fractional viscoelasticitysymbolsTajimi–Kanai filterGaussian processCivil and Structural Engineering
researchProduct