Search results for "DATA MINING"
showing 10 items of 907 documents
A Review of Recent Range Image Registration Methods with Accuracy Evaluation
2007
International audience; The three-dimensional reconstruction of real objects is an important topic in computer vision. Most of the acquisition systems are limited to reconstruct a partial view of the object obtaining in blind areas and occlusions, while in most applications a full reconstruction is required. Many authors have proposed techniques to fuse 3D surfaces by determining the motion between the different views. The first problem is related to obtaining a rough registration when such motion is not available. The second one is focused on obtaining a fine registration from an initial approximation. In this paper, a survey of the most common techniques is presented. Furthermore, a sampl…
A proposed mapping method for aligning machine execution data to numerical control code
2019
The visions of the digital thread and smart manufacturing have boosted the potential of relating downstream data to upstream decisions in design. However, to date, the tools and methods to robustly map across the related data representations is significantly lacking. In response, we propose a mapping technique for standard manufacturing data representations. Specifically, we focus on relating controller data from machining tools in the form of MTConnect, an emerging standard that defines the vocabulary and semantics as well as communications protocols for execution data, and G-Code, the most widely used standard for numerical control (NC) instructions. We evaluate the efficacy of our mappin…
Adjusted bat algorithm for tuning of support vector machine parameters
2016
Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…
Input Selection Methods for Soft Sensor Design: A Survey
2020
Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for real-time estimation of hard-to-measure variables as a function of available data obtained from online sensors. SSs are generally built using industries historical databases through data-driven approaches. A critical issue in SS design concerns the selection of input variables, among those available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great numbers, making the design computationally demanding and leading to poorly performing models. An input selection procedure is then necessary. Most used input selection approaches for SS design are addressed in this …
Watermarking for ontologies
2011
In this paper, we study watermarking methods to prove the ownership of an ontology. Different from existing approaches, we propose to watermark not by altering existing statements, but by removing them. Thereby, our approach does not introduce false statements into the ontology. We show how ownership of ontologies can be established with provably tight probability bounds, even if only parts of the ontology are being re-used. We finally demonstrate the viability of our approach on real-world ontologies.
Selection of time windows in the horizontal-to-vertical noise spectral ratio by means of cluster analysis
2016
The selection of the elementary analysis windows in continuous noise recordings for optimal estimation of the mean horizontal‐to‐vertical spectral ratio (HVSR) curve is generally performed by visual inspection of HVSR curves considered as functions of time. Starting from full‐length records, HVSR curves are determined in consecutive time windows of appropriate lengths. Time windows with HVSR curves that are anomalous on the basis of a simple visual inspection are generally ignored in the computation of the average HVSR curve. It is often very difficult to optimize the selection of time windows to be used for the calculation of the HVSR curve representative of a site. The use of nonobjective…
Assessment of tumor-infiltrating TCRV γ 9V δ 2 γδ lymphocyte abundance by deconvolution of human cancers microarrays
2017
Most human blood γδ cells are cytolytic TCRVγ9Vδ2+lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+γδ lymphocytes and then appl…
New approach to generating insights for aging research based on literature mining and knowledge integration.
2017
The proportion of the elderly population in most countries worldwide is increasing dramatically. Therefore, social interest in the fields of health, longevity, and anti-aging has been increasing as well. However, the basic research results obtained from a reductionist approach in biology and a bioinformatic approach in genome science have limited usefulness for generating insights on future health, longevity, and anti-aging-related research on a case by case basis. We propose a new approach that uses our literature mining technique and bioinformatics, which lead to a better perspective on research trends by providing an expanded knowledge base to work from. We demonstrate that our approach …
Recentrifuge: Robust comparative analysis and contamination removal for metagenomics
2017
Metagenomic sequencing is becoming widespread in biomedical and environmental research, and the pace is increasing even more thanks to nanopore sequencing. With a rising number of samples and data per sample, the challenge of efficiently comparing results within a specimen and between specimens arises. Reagents, laboratory, and host related contaminants complicate such analysis. Contamination is particularly critical in low microbial biomass body sites and environments, where it can comprise most of a sample if not all. Recentrifuge implements a robust method for the removal of negative-control and crossover taxa from the rest of samples. With Recentrifuge, researchers can analyze results f…
iSEE: Interactive SummarizedExperiment Explorer
2018
Data exploration is critical to the comprehension of large biological data sets generated by high-throughput assays such as sequencing. However, most existing tools for interactive visualisation are limited to specific assays or analyses. Here, we present the iSEE (Interactive SummarizedExperiment Explorer) software package, which provides a general visual interface for exploring data in a SummarizedExperiment object. iSEE is directly compatible with many existing R/Bioconductor packages for analysing high-throughput biological data, and provides useful features such as simultaneous examination of (meta)data and analysis results, dynamic linking between plots and code tracking for reproduci…