Search results for "DBSCAN"
showing 6 items of 6 documents
Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain)
2021
Forest fires are undesirable situations with tremendous impacts on wildlife and people&rsquo
DBSCAN Algorithm for Document Clustering
2019
Abstract Document clustering is a problem of automatically grouping similar document into categories based on some similarity metrics. Almost all available data, usually on the web, are unclassified so we need powerful clustering algorithms that work with these types of data. All common search engines return a list of pages relevant to the user query. This list needs to be generated fast and as correct as possible. For this type of problems, because the web pages are unclassified, we need powerful clustering algorithms. In this paper we present a clustering algorithm called DBSCAN – Density-Based Spatial Clustering of Applications with Noise – and its limitations on documents (or web pages)…
A novel heuristic memetic clustering algorithm
2013
In this paper we introduce a novel clustering algorithm based on the Memetic Algorithm meta-heuristic wherein clusters are iteratively evolved using a novel single operator employing a combination of heuristics. Several heuristics are described and employed for the three types of selections used in the operator. The algorithm was exhaustively tested on three benchmark problems and compared to a classical clustering algorithm (k-Medoids) using the same performance metrics. The results show that our clustering algorithm consistently provides better clustering solutions with less computational effort.
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
2017
Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan yhdistetään ennalta tuntematon data ja poikkeavuudet, muodostuu ongelma vielä laajemmaksi. Spektraalisten poikkeavuuksien havaitsemiseen on kehitetty useita eri menetelmiä, mutta spatiaalisten poikkeavuuksien havaitseminen on huomattavasti hankalempaa. Tässä työssä esitellään uudenkaltainen menetelmä sekä spatiaalisten että spektraalisten poikkeavuuksien samanaikaiseen havaitsemiseen. Menetelmä on suunniteltu erityisesti spektraaliselle datalle, mutta soveltuu myös perinteisil…
Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters.
2012
A new approach to determining the unit-cell vectors from single-crystal diffraction data based on clustering analysis is proposed. The method uses the density-based clustering algorithm DBSCAN. Unit-cell determination through the clustering procedure is particularly useful for limited tilt sequences and noisy data, and therefore is optimal for single-crystal electron-diffraction automated diffraction tomography (ADT) data. The unit-cell determination of various materials from ADT data as well as single-crystal X-ray data is demonstrated.
Optimization of spodumene identification by statistical approach for laser-induced breakdown spectroscopy data of lithium pegmatite ores
2021
Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the spatial distribution of elements: the rich spectral information also enables mineral recognition. In the present study, statistical approaches were used for the recognition of the spodumene from lithium pegmatite ores. A broad spectral range (280–820 nm) with multiple lines was first used to establish the methods based on vertex component analysis (VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site applications, the dimensions of the datasets must be reduced in order to accomplish fast analysis. Therefore, the capability of the methods in mineral identification was tested wi…