Search results for "DBSCAN"

showing 6 items of 6 documents

Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain)

2021

Forest fires are undesirable situations with tremendous impacts on wildlife and people&rsquo

DBSCANk-meansFire preventionPoison controlDistribution (economics)02 engineering and technologylcsh:Chemical technologyBiochemistryArticleAnalytical Chemistry0202 electrical engineering electronic engineering information engineeringlcsh:TP1-1185Electrical and Electronic EngineeringCluster analysisInstrumentationbusiness.industryEnvironmental resource management020206 networking & telecommunicationsartificial intelligenceDBSCANAtomic and Molecular Physics and OpticsWork (electrical)Software deploymentEnvironmental science020201 artificial intelligence & image processingfire preventionbusinessRelocationFloyd–WarshallSensors
researchProduct

DBSCAN Algorithm for Document Clustering

2019

Abstract Document clustering is a problem of automatically grouping similar document into categories based on some similarity metrics. Almost all available data, usually on the web, are unclassified so we need powerful clustering algorithms that work with these types of data. All common search engines return a list of pages relevant to the user query. This list needs to be generated fast and as correct as possible. For this type of problems, because the web pages are unclassified, we need powerful clustering algorithms. In this paper we present a clustering algorithm called DBSCAN – Density-Based Spatial Clustering of Applications with Noise – and its limitations on documents (or web pages)…

DBSCANInformation retrievalSimilarity (network science)Computer scienceWeb pageFeature selectionDocument clusteringCluster analysisData typeWord (computer architecture)International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
researchProduct

A novel heuristic memetic clustering algorithm

2013

In this paper we introduce a novel clustering algorithm based on the Memetic Algorithm meta-heuristic wherein clusters are iteratively evolved using a novel single operator employing a combination of heuristics. Several heuristics are described and employed for the three types of selections used in the operator. The algorithm was exhaustively tested on three benchmark problems and compared to a classical clustering algorithm (k-Medoids) using the same performance metrics. The results show that our clustering algorithm consistently provides better clustering solutions with less computational effort.

ta113Determining the number of clusters in a data setBiclusteringClustering high-dimensional dataDBSCANComputingMethodologies_PATTERNRECOGNITIONTheoretical computer scienceCURE data clustering algorithmCorrelation clusteringCanopy clustering algorithmCluster analysisAlgorithmMathematics2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
researchProduct

A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders

2017

Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan yhdistetään ennalta tuntematon data ja poikkeavuudet, muodostuu ongelma vielä laajemmaksi. Spektraalisten poikkeavuuksien havaitsemiseen on kehitetty useita eri menetelmiä, mutta spatiaalisten poikkeavuuksien havaitseminen on huomattavasti hankalempaa. Tässä työssä esitellään uudenkaltainen menetelmä sekä spatiaalisten että spektraalisten poikkeavuuksien samanaikaiseen havaitsemiseen. Menetelmä on suunniteltu erityisesti spektraaliselle datalle, mutta soveltuu myös perinteisil…

hyperspectral imagesautoencoderautoenkooderithdbscanSCAEconvolutional neural networkdeep learninghavaitseminenneuroverkotanomaly detectionconvolutional autoencodermachine learningkoneoppiminenpoikkeavuuskonvoluutioälytekniikkaCAEhyperspektrikuvatautoenkooderi
researchProduct

Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters.

2012

A new approach to determining the unit-cell vectors from single-crystal diffraction data based on clustering analysis is proposed. The method uses the density-based clustering algorithm DBSCAN. Unit-cell determination through the clustering procedure is particularly useful for limited tilt sequences and noisy data, and therefore is optimal for single-crystal electron-diffraction automated diffraction tomography (ADT) data. The unit-cell determination of various materials from ADT data as well as single-crystal X-ray data is demonstrated.

DiffractionDBSCANbusiness.industryComputer sciencePhysics::OpticsPattern recognitionDiffraction tomographyOpticsElectron diffractionStructural BiologyArtificial intelligencebusinessCluster analysisNoisy dataActa crystallographica. Section A, Foundations of crystallography
researchProduct

Optimization of spodumene identification by statistical approach for laser-induced breakdown spectroscopy data of lithium pegmatite ores

2021

Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the spatial distribution of elements: the rich spectral information also enables mineral recognition. In the present study, statistical approaches were used for the recognition of the spodumene from lithium pegmatite ores. A broad spectral range (280–820 nm) with multiple lines was first used to establish the methods based on vertex component analysis (VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site applications, the dimensions of the datasets must be reduced in order to accomplish fast analysis. Therefore, the capability of the methods in mineral identification was tested wi…

Materials scienceMineralLIBSspektroskopiatilastomenetelmätpegmatiititAnalytical chemistrychemistry.chemical_elementDBSCANVCASpodumenechemistryoptimointilitiummalmimineraalitalkuaineanalyysimineraalitLithiumLaser-induced breakdown spectroscopySpectroscopyInstrumentationK-meansSpectroscopyPegmatitelithium pegmatite ore
researchProduct