Search results for "DEGENERATION"

showing 10 items of 601 documents

Epilepsy in neuropathologically verified Alzheimer's disease.

2018

Abstract Purpose Subjects with Alzheimer's disease (AD) have been shown to be at a higher risk for epilepsy. The vast majority of the previous studies have not included a full neuropathological examination. Methods The objective of this study was to assess the prevalence of epilepsy and clinicopathological characteristics in a well-defined study group of 64 subjects with AD. We evaluated the clinicopathological findings in 64 subjects (mean age at death 85 ± 8.6 years) from a longitudi-nal study cohort of patients with dementia. Results Eleven out of the 64 subjects (17%) had a history of epilepsy, which is comparable to previous studies. The subjects with AD and epilepsy were significantly…

0301 basic medicineApolipoprotein EMalemedicine.medical_specialtyNeurologyTime FactorsalzheimerAutopsyNeuropathologyDiseaseAlzheimerin tauti03 medical and health sciencesEpilepsyautopsy0302 clinical medicineApolipoproteins EAlzheimer DiseaseInternal medicinemedicinePrevalenceDementiaHumansneurodegenerative diseasesLongitudinal Studiesta515ta316Aged 80 and overEpilepsybusiness.industryneurodegenerationAge FactorsBrainGeneral MedicineAlzheimer's diseasemedicine.diseaseneurodegeneratiiviset sairaudetHospitalization030104 developmental biologyNeurologyruumiinavausCohortFemaleNeurology (clinical)businessepilepsia030217 neurology & neurosurgerydementiaFollow-Up StudiesSeizure
researchProduct

PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia

2020

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…

0301 basic medicineAtaxiaCell SurvivalCaspase 3PPAR agonistlcsh:RC321-57103 medical and health sciencesMice0302 clinical medicineIron-Binding ProteinsmedicineNeuritesAnimalsHumansMyocytes CardiacNeurodegenerationDorsal root ganglia neuronslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMembrane Potential MitochondrialNeuronsCardiomyocytesbiologyChemistryFrataxinNeurodegenerationCalpainLipid DropletsPeroxisomemedicine.diseaseCell biologyMitochondriaRatsPPAR gamma030104 developmental biologyNeurologyMitochondrial biogenesisFriedreich AtaxiaFrataxinbiology.proteinThiazolidinedionesmedicine.symptomMitochondrial function030217 neurology & neurosurgery
researchProduct

Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

2017

15 Pages, 8 Figures. The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fnmol.2017.00264/full#supplementary-material

0301 basic medicineAtaxiaNeuriteFriedreich’s ataxiarare diseaseMitochondrionlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineBAPTAmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyOriginal ResearchcalciumbiologyNeurodegenerationneurodegenerationFriedreich's ataxiaaxonal spheroidsmedicine.disease3. Good healthmitochondria030104 developmental biologyPeripheral neuropathychemistrynervous systemFrataxinbiology.proteinAxoplasmic transportmedicine.symptomNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration

2020

Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying …

0301 basic medicineAtaxiaUnverricht–Lundborg disease (ULD)PhysiologyNeurodegeneration with brain iron accumulationClinical BiochemistryFriedreich’s ataxiaReviewmedicine.disease_causeBioinformaticsBiochemistry03 medical and health scienceschemistry.chemical_compoundLafora disease (LD)0302 clinical medicineMedicineprogressive myoclonus epilepsy (PME)Molecular BiologyNeuroinflammationReactive nitrogen speciesneurodegenerative disorders with brain iron accumulation (NBIA)business.industryNeurodegenerationlcsh:RM1-950NeurotoxicityCell Biologymedicine.diseaseDravet syndromeCharcot-Marie-Tooth disease (CMT)030104 developmental biologylcsh:Therapeutics. Pharmacologychemistrymedicine.symptombusinessMyoclonusinherited retinal dystrophy (IRD)030217 neurology & neurosurgeryOxidative stressAntioxidants
researchProduct

2019

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to CNS inflammation and neurodegeneration. Current anti-inflammatory drugs have only limited efficacy on progressive neurodegenerative processes underlining the need to understand immune-mediated neuronal injury. Cell adhesion molecules play an important role for immune cell migration over the blood-brain barrier whereas their role in mediating potentially harmful contacts between invading immune cells and neurons is incompletely understood. Here, we assess the role of the CNS-specific neuronal adhesion molecule ICAM-5 using experimental autoimmune encephalomyelitis (EAE), an animal model of …

0301 basic medicineAutoimmune diseasebusiness.industryMultiple sclerosisExperimental autoimmune encephalomyelitisCentral nervous systemNeurodegenerationmedicine.diseaseNeuroprotection03 medical and health sciences030104 developmental biology0302 clinical medicineImmune systemmedicine.anatomical_structureNeurologyImmunologymedicineNeurology (clinical)business030217 neurology & neurosurgeryNeuroinflammationFrontiers in Neurology
researchProduct

CD36 gene is associated with intraocular pressure elevation after intravitreal application of anti-VEGF agents in patients with age-related macular d…

2017

IF 1.886; International audience; Background: The wet form of age-related macular degeneration (AMD) is characterized by pathological vascularization of the outer retinal layers. The condition responds to treatment with antibodies against vascular endothelial growth factor (VEGF), but the patients receiving such anti-VEGF therapy sometimes show undesirable acute short-term increases in the intraocular pressure (IOP). The cause of this adverse effect is unknown, and here, we are testing a hypothesis that it is related to CD36 gene polymorphisms.Materials and Methods: A group of 134 patients with AMD were given three therapeutic doses of anti-VEGF antibody (ranibizumab) at monthly intervals. …

0301 basic medicineCD36 AntigensMaleVascular Endothelial Growth Factor AIntraocular pressuregenetic structuresreceptorGlaucomaAngiogenesis InhibitorsthrombospondinPolymerase Chain Reactionpolymorphismchemistry.chemical_compound0302 clinical medicineGenotypeGenetics (clinical)Schlemm´s canalVascular endothelial growth factorIntravitreal InjectionsFemalemedicine.drugmedicine.medical_specialtyPolymorphism Single Nucleotide03 medical and health sciencesTonometry Ocular[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyOphthalmologyRanibizumabmedicineHumansAdverse effectIntraocular PressureAgedbusiness.industryGlaucomaRetinalMacular degenerationmedicine.diseaseeye diseasesOphthalmology030104 developmental biologychemistryPediatrics Perinatology and Child Health030221 ophthalmology & optometryWet Macular DegenerationOcular Hypertensionsense organsRanibizumabbusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyOphthalmic genetics
researchProduct

Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast

2020

Hyperphosphorylation of protein tau is a hallmark of Alzheimer’s disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altere…

0301 basic medicineCDK5Cèl·lulesTau proteinSit42HyperphosphorylationSaccharomyces cerevisiaeSACCHAROMYCES-CEREVISIAECeramide03 medical and health scienceschemistry.chemical_compoundCell and Developmental Biology0302 clinical medicineInositolceramideYpk1Inositol phosphatelcsh:QH301-705.51-IP7Original Researchchemistry.chemical_classificationScience & TechnologybiologyChemistryKinaseNEURODEGENERATIONLipid metabolismCell BiologyProtein phosphatase 2Fpk1MICROTUBULE-BINDINGPho85SERINE PALMITOYLTRANSFERASECell biologyALZHEIMERS-DISEASE030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisGLYCOGEN-SYNTHASE KINASE-3-BETAbiology.proteinKINASE-ACTIVITYPhosphorylationLife Sciences & BiomedicineBETA TOXICITYProteïnesDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders

2017

Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is…

0301 basic medicineCalcium pumpExcitotoxicitychemistry.chemical_elementCalciumProtein oxidationmedicine.disease_causeProtein Structure SecondaryPlasma Membrane Calcium-Transporting ATPases03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansPhylogenyCalcium metabolismMembrane potentialChemistryGeneral NeuroscienceNeurodegenerationNeurodegenerative Diseasesmedicine.diseaseCytosol030104 developmental biologyNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration

2017

The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing either human FOXP2 cDNA or its orthologues from the common chimpanzee, Rhesus monkey, and marmoset, respectively. Subsequent RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. Importantly, RT-qPCR and Western blotting indicated differential re…

0301 basic medicineCell signalingCytoskeleton organizationspeechbrainBiologyAxonogenesislcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceHuntington's diseasemedicineGeneTranscription factorlcsh:Neurosciences. Biological psychiatry. Neuropsychiatryneuronal circuitryOriginal ResearchlanguageNeurodegenerationFOXP2medicine.diseaseschizophrenia030104 developmental biologyParkinson’s diseaseNeuroscienceAlzheimer’s diseaseNeuroscienceHuntington’s diseaseFrontiers in Cellular Neuroscience
researchProduct

How repair-or-dispose decisions under stress can initiate disease progression

2020

Summary Glia, the helper cells of the brain, are essential in maintaining neural resilience across time and varying challenges: By reacting to changes in neuronal health glia carefully balance repair or disposal of injured neurons. Malfunction of these interactions is implicated in many neurodegenerative diseases. We present a reductionist model that mimics repair-or-dispose decisions to generate a hypothesis for the cause of disease onset. The model assumes four tissue states: healthy and challenged tissue, primed tissue at risk of acute damage propagation, and chronic neurodegeneration. We discuss analogies to progression stages observed in the most common neurodegenerative conditions and…

0301 basic medicineCell signalingDisease onsetBioinformaticsSystems biology02 engineering and technologyArticle03 medical and health sciencesMathematical BiosciencesTissue damageMedicineddc:610Systems NeuroscienceResilience (network)lcsh:ScienceSystems neuroscienceMultidisciplinarybusiness.industrySystems BiologyNeurodegenerationDisease progression021001 nanoscience & nanotechnologymedicine.diseaseCrosstalk (biology)030104 developmental biologylcsh:Q0210 nano-technologybusinessNeuroscienceNeuroscience
researchProduct