Search results for "DEIONIZATION"
showing 3 items of 3 documents
Evaluation of the optimal activation parameters for almond shell bio-char production for capacitive deionization
2020
Abstract A study on a possible new biomass waste to be used as electrode material for capacitive deionization (CDI) processes was performed. Raw almond shells were pyrolyzed at 800, 900 and 1000 °C and then activated through CO2. Carbon activation is used to develop porosity inside the material, increasing the specific surface area and the adsorption performances. In this work, authors tried to correlate the effects of pyrolysis and activation temperature on the ion storage capacity. Results from the desalination tests indicated that the best performance in terms of ion adsorption was obtained when the bio-char was activated at the temperature of 900 °C. Brunauer-Emmet-Teller (BET) and Barr…
Electrodialysis for wastewater treatment-part II: Industrial effluents
2020
Abstract Electrodialysis and related processes have huge potential in the treatment of effluents from a variety of industrial processes. They can recover water and other valuable products, including heavy metal ions, acids and bases, nutrients, and organics. In recent years, novel and improved systems have been continuously developed as a result of research in the field, showing that the (near) zero liquid discharge approach can be affordable in several industrial applications. A larger market share is expected in the near future.
Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors
2015
Thermal energy is abundantly available, and especially low-grade heat is often wasted in industrial processes as a by-product. Tapping into this vast energy reservoir with cost-attractive technologies may become a key element for the transition to an energy-sustainable economy and society. We propose a novel heat-to-current converter which is based on the temperature dependence of the cell voltage of charged supercapacitors. Using a commercially available supercapacitor, we observed a thermal cell-voltage rise of around 0.6 mV K-1 over a temperature window of 0 degrees C to 65 degrees C. Within our theoretical model, this can be used to operate a Stirling-like charge-voltage cycle whose eff…