Search results for "DEMO Reactor"
showing 5 items of 15 documents
Structural analysis of the back supporting structure of the DEMO WCLL outboard blanket
2017
Abstract Within the framework of EUROfusion R&D activities an intense research campaign has been carried out at the University of Palermo, in close cooperation with ENEA Brasimone, in order to investigate the thermo-mechanical performances of the outboard segment Back-Supporting Structure (BSS) of the DEMO Water-Cooled Lithium Lead breeding blanket (WCLL). In particular, the configuration of the outboard segment BSS, purposely set-up by the WCLL project team during 2015 according to the blanket “multi-module system” concept, has been taken into account in order to study its steady state thermo-mechanical behaviour, paying attention to the simulation of both modules-BSS and BSS-vacuum vessel…
Identification of blanket design points using an integrated multi-physics approach
2017
Abstract The breeding blanket (BB) is one of the key components for a fusion reactor. It is expected to sustain and remove considerable heat loads due to the heat flux coming from the plasma and the nuclear power deposited by the fusion neutrons. In the design of the BB, the engineering requirements of nuclear, material and safety kind are involved. In the European DEMO project, several efforts are dedicated to the development of an integrated simulation-design tool able to perform a multi-physics analysis, allowing the characterisation of BB design points which are consistent from the neutronic, thermal-hydraulic and thermo-mechanical point of view. Furthermore, at Karlsruhe Institute of T…
Validation of Multi-Physics Integrated Procedure for the HCPB Breeding Blanket
2019
The wide range of requirements and constraints involved in the design of nuclear components for fusion reactors makes the development of multi-physics analysis procedures of utmost importance. In the framework of the European DEMO project, the Karlsruhe Institute of Technology (KIT) is dedicating several efforts to the development of a multi-physics analysis tool allowing the characterization of breeding blanket design points which are consistent from the neutronic, thermal-hydraulic and thermal-mechanical points of view. In particular, a procedure developed at KIT is characterized by the implementation of analysis software only. A preliminary step for the validation of such a procedure ha…
On the numerical assessment of the thermo-mechanical performances of the DEMO Helium-Cooled Pebble Bed breeding blanket module
2014
Within the framework of the European DEMO Breeder Blanket Programme, a research campaign has been launched by University of Palermo, ENEA-Brasimone and Karlsruhe Institute of Technology to theoretically investigate the thermo-mechanical behavior of the Helium-Cooled Pebble Bed (HCPB) breeding blanket module of the DEMO1 blanket vertical segment, under normal operation and over-pressurization loading scenarios. The research campaign has been carried out following a theoretical-computational approach based on the finite element method (FEM) and adopting a qualified commercial FEM code. A realistic 3D FEM model of the HCPB blanket module central poloidal-radial region has been developed, inclu…
Parametric study of the influence of First Wall cooling water on the Water Cooled Lithium Lead Breeding Blanket nuclear response
2019
Abstract In the framework of EUROfusion Work Package International Cooperation R&D activities, a close collaboration has been started among University of Palermo, ENEA Brasimone and ENEA Frascati for the development of the Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) concept. In this context, a research campaign has been carried out at the University of Palermo in order to investigate the influence of First Wall (FW) cooling water configuration on the nuclear response of the WCLL BB under irradiation in EU-DEMO, in order to gain useful indications for the WCLL BB pre-conceptual designs. To this end, three-dimensional nuclear analyses have been performed by MCNP5 v. 1.6 Monte Carlo…