Search results for "DETECTION"
showing 10 items of 2543 documents
Interface Detection Using a Quenched-Noise Version of the Edwards-Wilkinson Equation
2015
We report here a multipurpose dynamic-interface-based segmentation tool, suitable for segmenting planar, cylindrical, and spherical surfaces in 3D. The method is fast enough to be used conveniently even for large images. Its implementation is straightforward and can be easily realized in many environments. Its memory consumption is low, and the set of parameters is small and easy to understand. The method is based on the Edwards-Wilkinson equation, which is traditionally used to model the equilibrium fluctuations of a propagating interface under the influence of temporally and spatially varying noise. We report here an adaptation of this equation into multidimensional image segmentation, an…
Potku – New analysis software for heavy ion elastic recoil detection analysis
2014
Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of- flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined rang…
Online anomaly detection using dimensionality reduction techniques for HTTP log analysis
2015
Modern web services face an increasing number of new threats. Logs are collected from almost all web servers, and for this reason analyzing them is beneficial when trying to prevent intrusions. Intrusive behavior often differs from the normal web traffic. This paper proposes a framework to find abnormal behavior from these logs. We compare random projection, principal component analysis and diffusion map for anomaly detection. In addition, the framework has online capabilities. The first two methods have intuitive extensions while diffusion map uses the Nyström extension. This fast out-of-sample extension enables real-time analysis of web server traffic. The framework is demonstrated using …
Cognitive self-healing system for future mobile networks
2015
This paper introduces a framework and implementation of a cognitive self-healing system for fault detection and compensation in future mobile networks. Performance monitoring for failure identification is based on anomaly analysis, which is a combination of the nearest neighbor anomaly scoring and statistical profiling. Case-based reasoning algorithm is used for cognitive self-healing of the detected faulty cells. Validation environment is Long Term Evolution (LTE) mobile system simulated with Network Simulator 3 (ns-3) [1, 2]. Results demonstrate that cognitive approach is efficient for compensation of cell outages and is capable to improve network coverage. Anomaly analysis can be used fo…
UAV-based hyperspectral monitoring of small freshwater area
2014
Recent development in compact, lightweight hyperspectral imagers have enabled UAV-based remote sensing with reasonable costs. We used small hyperspectral imager based on Fabry-Perot interferometer for monitoring small freshwater area in southern Finland. In this study we shortly describe the utilized technology and the field studies performed. We explain processing pipeline for gathered spectral data and introduce target detection-based algorithm for estimating levels of algae, aquatic chlorophyll and turbidity in freshwater. Certain challenges we faced are pointed out.
Revealing Fake Profiles in Social Networks by Longitudinal Data Analysis
2017
Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details
2012
Detecting invisible details and separating mixed evidence is critical for forensic inspection. If this can be done reliably and fast at the crime scene, irrelevant objects do not require further examination at the laboratory. This will speed up the inspection process and release resources for other critical tasks. This article reports on tests which have been carried out at the University of Jyväskylä in Finland together with the Central Finland Police Department and the National Bureau of Investigation for detecting and separating forensic details with hyperspectral technology. In the tests evidence was sought after at an assumed violent burglary scene with the use of VTT's 500-900 nm wave…
Modelling Recurrent Events for Improving Online Change Detection
2016
The task of online change point detection in sensor data streams is often complicated due to presence of noise that can be mistaken for real changes and therefore affecting performance of change detectors. Most of the existing change detection methods assume that changes are independent from each other and occur at random in time. In this paper we study how performance of detectors can be improved in case of recurrent changes. We analytically demonstrate under which conditions and for how long recurrence information is useful for improving the detection accuracy. We propose a simple computationally efficient message passing procedure for calculating a predictive probability distribution of …
Methods for estimating forest stem volumes by tree species using digital surface model and CIR images taken from light UAS
2012
In this paper we consider methods for estimating forest tree stem volumes by species using images taken from light unmanned aircraft systems (UAS). Instead of using LiDAR and additional multiband imagery a color infrared camera mounted to a light UAS is used to acquire both imagery and the DSM of target area. The goal of this study is to accurately estimate tree stem volumes in three classes. The status of the ongoing work is described and an initial method for delineating and classifying treetops is presented.
An Efficient Network Log Anomaly Detection System Using Random Projection Dimensionality Reduction
2014
Network traffic is increasing all the time and network services are becoming more complex and vulnerable. To protect these networks, intrusion detection systems are used. Signature-based intrusion detection cannot find previously unknown attacks, which is why anomaly detection is needed. However, many new systems are slow and complicated. We propose a log anomaly detection framework which aims to facilitate quick anomaly detection and also provide visualizations of the network traffic structure. The system preprocesses network logs into a numerical data matrix, reduces the dimensionality of this matrix using random projection and uses Mahalanobis distance to find outliers and calculate an a…