Search results for "DETECTOR"

showing 10 items of 3491 documents

Multimessenger Astronomy with Neutrinos

2021

Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.

Astroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Field (physics)Physics::Instrumentation and DetectorsAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosElementary particle physicsGeneral Physics and AstronomyAstronomyFOS: Physical sciencesQC793-793.5astronomy_astrophysicsPhysics::History of Physicsastroparticle physicsmultimessenger astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector.

2006

On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gamm…

Astroparticle physicsPhysicsMuonSolar flarePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Gamma rayGeneral Physics and AstronomyAstronomyFOS: Physical sciencesAstrophysicsAstrophysicsGalaxylaw.inventionPulsarlawAstronomiaHigh Energy Physics::ExperimentNeutrinoFlarePhysical review letters
researchProduct

Theory and implications of neutrino mass

1989

Abstract I briefly review the basic theory of neutrino mass from the point of view of modern gauge theories. Some of the implications of neutrino masses for particle physics, nuclear physics, cosmology and astrophysics are discussed.

Astroparticle physicsPhysicsNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologySupersymmetryAtomic and Molecular Physics and OpticsCosmologyBibliographyNuclear astrophysicsHigh Energy Physics::ExperimentGauge theoryNeutrinoNeutrino oscillationNuclear Physics B - Proceedings Supplements
researchProduct

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

2007

A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsRange (particle radiation)MuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesFluxCosmic rayAstrophysicsAstrophysicsSpectral lineAstronomiaNeutron detectionddc:530High Energy Physics::ExperimentNeutrino
researchProduct

Erratum to ``Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope'' [Astroparticle Physics 33 (2) (2010)…

2010

International audience; Not Available

Astroparticle physicsPhysicsParticle physics010308 nuclear & particles physicsNeutrino telescopeAstronomy and AstrophysicsSolar neutrino problem01 natural sciencesNeutrino detector0103 physical sciencesMuon fluxNeutrinoNeutrino oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysics
researchProduct

Physics results from the Amanda neutrino detector

2001

In the winter season of 2000, the AMANDA (Antarctic Muon And Neutrino Detector Array) detector was completed to its final state. We report on major physics results obtained from the AMANDA-B10 detector, as well as initial results of the full AMANDA-II detector.

Astroparticle physicsPhysicsParticle physicsMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorSolar neutrino problemNuclear physicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNeutrino oscillationPhysics::Atmospheric and Oceanic PhysicsParticle Physics - Phenomenology
researchProduct

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

2005

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

Astroparticle physicsPhysicsParticle physicsRange (particle radiation)AMANDAMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorDark matterHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)NeutralinoFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAMANDA; Dark matter; Neutralino; Neutrino telescopesNuclear physicsNeutrino detectorNeutralinoMuon fluxDark matterHigh Energy Physics::ExperimentNeutrino telescopes
researchProduct

First year performance of the IceCube neutrino telescope

2006

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

Astroparticle physicsPhysicsPhotomultiplierMuonPerformanceDetectorAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsIceCube Neutrino ObservatoryAmandaIceCubeDetectionData acquisitionFirst yearAmanda; Detection; First year; IceCube; IceTop; Neutrino; Performance; South poleNeutrinoSouth poleAstronomiaIceTopNeutrinoCherenkov radiation
researchProduct

Topological track reconstruction in unsegmented, large-volume liquid scintillator detectors

2018

Unsegmented, large-volume liquid scintillator (LS) neutrino detectors have proven to be a key technology for low-energy neutrino physics. The efficient rejection of radionuclide background induced by cosmic muon interactions is of paramount importance for their success in high-precision MeV neutrino measurements. We present a novel technique to reconstruct GeV particle tracks in LS, whose main property, the resolution of topological features and changes in the differential energy loss $\mathrm{d}E/\mathrm{d}x$, allows for improved rejection strategies. Different to common track reconstruction approaches, our method does not rely on concrete track / topology hypotheses. Instead, based on a r…

Astroparticle physicsPhysicsPhysics - Instrumentation and DetectorsPhotonMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ScintillatorTopology01 natural sciencesNeutrino detector0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsInstrumentationImage resolutionMathematical PhysicsJournal of Instrumentation
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct