Search results for "DETECTOR"
showing 10 items of 3491 documents
Background noise suppression for acoustic localization by means of an adaptive energy detection approach
2008
A microphone array can be employed to localize dominant acoustic sources in a given noisy environment. This capability is successfully used in good signal to noise ratio (SNR) conditions but its accuracy decreases considerably in the presence of other background noise sources. In order to counteract this effect, a novel approach that combines the information provided by a Gaussian energy detector (GED) with the approved localization method SRP-PHAT is presented in this paper. To evaluate the presented technique, several acoustic sources (speech and impulsive sounds) were considered in a variety of different scenarios to demonstrate the robustness and the accuracy of the system proposed.
Rapid online solid-state battery diagnostics with optically pumped magnetometers
2020
Applied Sciences 10(21), 7864 (2020). doi:10.3390/app10217864
In-flight calibration of the ROSAT HRI ultraviolet sensitivity
2000
Comparing measured and estimated count rates of a few selected sample stars, we confirm the validity and provide the in-flight calibration of the ROSAT HRI UV/visible effective area model in Zombeck et al. The count rate estimates for Betelgeuse derived with this model are in agreement with the measured HRI upper limit. This result is also confirmed in an erratum by Berghöfer et al. aimed at revising their previous calculation, which was overestimated by more than 2 orders of magnitude. Adopting this ROSAT HRI UV/visible effective area model and measured UV/visible spectra of a set of sample stars covering the range of Teff 3000-40,000 K, we have built the calibration curves to estimate UV/…
Position-sensitive neutron detector
2002
Abstract A position-sensitive neutron detector has been developed for use in nuclear physics research. The detector consists of a ∅5.5 cm×100 cm long quartz tube filled with liquid scintillator viewed from both ends by photomultipliers and enclosed in a light-tight titanium container. The properties of the detector were determined both experimentally and by Monte Carlo simulations (EFEN code). A time resolution of 0.4 ns was reached resulting in the position resolution of less than 4 cm. The neutron registration efficiency varies from 36% to 20% within neutron energy range 1–10 MeV and is practically independent of the position along the detector length. Good n–γ separation is achieved for …
Neutron fluence spectrometry using disk activation
2009
Abstract A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000–10000 cm −2 s −1 , where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also b…
Embedded System Study for Real Time Boosting Based Face Detection
2006
This paper describes a study for a real time embedded face detection system. Recently, the boosting based face detection algorithms proposed by [(Viola, P and Jone, M, 2001); (Lienhart, R, et al., 2003)] have gained a lot of attention and are considered as the fastest accurate face detection algorithms today. However, the embedded implementation of such algorithms into hardware is still a challenge, since these algorithms are heavily based on memory access. A sequential implementation model is built showing its lack of regularity in time consuming and speed of detection. We propose a parallel implementation that exploits the parallelism and the pipelining in these algorithms. This implement…
Real Time Robust Embedded Face Detection Using High Level Description
2011
Face detection is a fundamental prerequisite step in the process of face recognition. It consists of automatically finding all the faces in an image despite the considerable variations of lighting, background, appearance of people, position/orientation of faces, and their sizes. This type of object detection has the distinction of having a very large intra-class, making it a particularly difficult problem to solve, especially when one wishes to achieve real time processing. A human being has a great ability to analyze images. He can extract the information about it and focus only on areas of interest (the phenomenon of attention). Thereafter he can detect faces in an extremely reliable way.…
Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode
2008
We describe a method to obtain the brightness and number of molecules at each pixel of an image stack obtained with a laser scanning microscope. The method is based on intensity fluctuations due to the diffusion of molecules in a pixel. For a detector operating in the analog mode, the variance must be proportional to the intensity. Once this constant has been calibrated, we use the ratio between the variance and the intensity to derive the particle brightness. Then, from the ratio of the intensity to the brightness we obtain the average number of particles in the pixel. We show that the method works with molecules in solution and that the results are comparable to those obtained with fluctu…
Multi-channel search for squarks and gluinos in root s=7 TeV pp collisions with the ATLAS detector at the LHC
2013
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb[superscript −1] of √s = 7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95 % confidence level…
Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo
2019
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…