Search results for "DETECTOR"
showing 10 items of 3491 documents
Measurement of the W boson mass
1996
The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be
Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 2ℓ2ν final states with the ATLAS detector
2018
A measurement of off-shell Higgs boson production in the and decay channels, where ℓ stands for either an electron or a muon, is performed using data from proton–proton collisions at a centre-of-mass energy of TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of . An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs…
"Table 11" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Barrel Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow \tau\tau\nu$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in effi…
"Table 9" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS m…
2018
Barrel Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow cbs$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies…
"Table 22" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Endcap Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow \tau\tau\nu$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in effi…
"Table 10" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Barrel Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow lcb$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies…
"Table 20" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Endcap Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow cbs$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies…
"Table 19" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Endcap Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow \nu b \bar{b}$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in ef…
"Table 8" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS m…
2018
Barrel Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow \nu b \bar{b}$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in ef…
"Table 21" of "Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS …
2018
Endcap Muon RoI Cluster trigger efficiencies (in %) for baryogenesis $\chi \rightarrow lcb$ benchmark samples ($m_{h}=125$ GeV). The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies…