Search results for "DEUTERONS"

showing 5 items of 5 documents

Measurement of the low-energy antideuteron inelastic cross section

2020

In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of $0.3 \leq p < 4$ GeV/$c$. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of antiparticles through the detector material. The analysis of th…

interaction [cosmic radiation]MOMENTUM RANGEAntiparticle:Kjerne- og elementærpartikkelfysikk: 431 [VDP]HadronGeneral Physics and AstronomyPROPAGATIONcosmic radiation: interactionhiukkasfysiikkanucl-ex01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEbenchmarknucleon nucleonHadron-Hadron scattering (experiments)antideuteronmodel: GlauberpropagationAnti-nuclei[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ABSORPTIONAntimatter; heavy ion reactionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimenthadron-hadron scatteringNuclear Physics LHC ALICEPhysicsHadron-Hadron scattering (experiments); antinuclei cross sectionsLarge Hadron Colliderp: spectrumheavy ion reactionsPhysicsspectrum [p]VDP::Kjerne- og elementærpartikkelfysikk: 431antinuclei cross sectionsanti-pddc:3. Good healthPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]DEUTERONSantimateriaVDP::Nuclear and elementary particle physics: 431COALESCENCEAntimatterGEANTantinucleus: productionydinfysiikkaParticle Physics - ExperimentPB-PB COLLISIONSAntimatterCERN Labinterpretation of experiments: CERN LHC CollFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Physics and Astronomy(all)114 Physical sciencesdark matterNuclear physicsMomentumCross section (physics)0103 physical sciencesSCATTERINGddc:530Anti-nuclei; ALICE experiment; hadron-hadron scatteringNuclear Physics - Experimentnumerical calculations010306 general physicsHE-4PB-PB COLLISIONS; LIGHT-NUCLEI; MOMENTUM RANGE; GEV-C; ABSORPTION; HE-4; PROPAGATION; COALESCENCE; SCATTERING; DEUTERONShep-exGlauber [model]low-energy antideuteron ; cross sectionALICE experimentparametrizationantiparticleNATURAL SCIENCES. Physics.LIGHT-NUCLEIGEV-CAntiprotonCERN LHC Coll [interpretation of experiments]Elementary Particles and FieldsHigh Energy Physics::Experimentproduction [antinucleus]Glauber
researchProduct

The polarized double cell target of the SMC

1999

The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and …

PhysicsNuclear and High Energy PhysicsDISLarge Hadron ColliderMuonanalysisScatteringSMCPolarized targetSpin structurepolarized protons and deuteronsPolarization (waves)Deep inelastic scatteringNMRdynamic nuclear polarizationSMC; DIS; Polarized targetNuclear physicsDeuteriumPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesNuclear ExperimentNucleonInstrumentation
researchProduct

Multiplicity dependence of (anti-)deuteron production in pp collisions at √s = 7 TeV

2019

In this letter, the production of deuterons and anti-deuterons in pp collisions at √s = 7 TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum (pT). The measurements are discussed in the context of hadron–coalescence models. The coalescence parameter B2, extracted from the measured spectra of (anti-)deuterons and primary (anti-)protons, exhibits no significant pT-dependence for pT < 3 GeV/c, in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per …

Nuclear and High Energy PhysicsNuclear Theoryproton-proton collisionsanti-deuteronsdeuteronshiukkasfysiikkaNuclear Experiment
researchProduct

Production of deuterons, tritons, 3He nuclei, and their antinuclei in pp collisions at √s = 0.9, 2.76, and 7 TeV

2018

Invariant differential yields of deuterons and antideuterons in p p collisions at √ s = 0.9, 2.76 and 7 TeV and the yields of tritons, 3 He nuclei, and their antinuclei at √ s = 7 TeV have been measured with the ALICE detector at the CERN Large Hadron Collider. The measurements cover a wide transverse momentum ( p T ) range in the rapidity interval | y | < 0.5 , extending both the energy and the p T reach of previous measurements up to 3 GeV/ c for A = 2 and 6 GeV/ c for A = 3 . The coalescence parameters of (anti)deuterons and 3 ¯¯¯¯ He nuclei exhibit an increasing trend with p T and are found to be compatible with measurements in p A collisions at low p T and lower energies. The integrate…

Nuclear and High Energy Physics3HeNuclear Theoryparticle productionHigh Energy Physics::ExperimenttritonsdeuteronsNuclear Experimentpp collisions
researchProduct

Investigation of the elastic and inelastic scattering of He-3 from Be-9 in the energy range 30-60 MeV

2018

We have measured the differential cross-sections for the elastic as well as inelastic scattering populating the 2.43[Formula: see text]MeV [Formula: see text] excited state in [Formula: see text] using [Formula: see text] beams at energies of 30, 40 and 47[Formula: see text]MeV on a [Formula: see text] target. The experimental results for the elastic scattering were analyzed within the framework of the optical model using the Woods–Saxon and double-folding potentials. The theoretical calculations for the concerned excited states were performed using the coupled-channel method. The optimal deformation parameters for the excited states of [Formula: see text] nucleus were extracted.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)ta114010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and AstronomyComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)inelastic scatteringInelastic scattering01 natural sciencesdeformation parametersDEUTERONSnuclear physicsExcited state0103 physical sciencesscattering (physics)Computer Science::General Literaturesirontacoupled-channel methodsAtomic physicsElastic scattering010306 general physicsydinfysiikkaEnergy (signal processing)International journal of modern physics e-Nuclear physics
researchProduct