Search results for "DIBO"

showing 10 items of 37 documents

CCDC 705641: Experimental Crystal Structure Determination

2010

Related Article: J.Konu, H.M.Tuononen, T.Chivers|2009|Can.J.Chem.|87|461|doi:10.1139/V08-183

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates1357-tetrakis(t-butyl)-26-diphenyl-1357-tetraaza-4-germa-26-diboraspiro[3.3]heptane
researchProduct

CCDC 697079: Experimental Crystal Structure Determination

2011

Related Article: H.V.Ly, J.Moilanen, H.M.Tuononen, M.Parvez, R.Roesler|2011|Chem.Commun.|47|8391|doi:10.1039/c1cc12281a

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesbis(eta^5^-4-Methyl-35-diphenyl-12-pyrazo-35-diborolyl)-iron
researchProduct

CCDC 116236: Experimental Crystal Structure Determination

1999

Related Article: H.Braunschweig, M.Koster, K.W.Klinkhammer|1999|Angew.Chem.,Int.Ed.|38|2229|doi:10.1002/(SICI)1521-3773(19990802)38:15<2229::AID-ANIE2229>3.0.CO;2-#

Space GroupCrystallographyCrystal SystemCrystal StructurePentacarbonyl-bis(eta^5^-cyclopentadienyl)-(mu~2~-BB'-bis(dimethylimino)diboryloxycarbyne-BC)-di-molybdenumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1575615: Experimental Crystal Structure Determination

2017

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

Space GroupCrystallographyCrystal SystemCrystal Structurecis-38-dichloro-510-dimethyl-123678-hexaphenyl-38-diborata-38-dihydrodipyrrolo[12-a:1'2'-d]pyrazine-49-diium unknown solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1575616: Experimental Crystal Structure Determination

2017

Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051

Space GroupCrystallographyCrystal Systemtrans-38-dichloro-510-dimethyl-123678-hexaphenyl-38-diborata-38-dihydrodipyrrolo[12-a:1'2'-d]pyrazine-49-diiumCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 169924: Experimental Crystal Structure Determination

2001

Related Article: B.Abouhamza, M.Ait Ali, S.Allaoud, O.Blacque, B.Frange, A.Karim|2001|Acta Crystallogr.,Sect.C:Cryst.Struct.Commun.|57|796|doi:10.1107/S0108270101006187

Space GroupCrystallographycis-(eta^6^-7-chloro-3-(3-chloro-2-methylphenyl)-248-trimethyl-1234-tetrahydro-24-dibora-13-diazanaphthalene)-tricarbonyl-chromium(0)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

2013

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portu…

Standard Modeldilepton: mass spectrumCiencias Físicas01 natural sciences7. Clean energySettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentHiggs particle: hadroproduction//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)vector boson: fusion[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCBosonPhysicsHIGGS BOSONLarge Hadron Collidervector boson: pair productiontransverse energy: missing-energy4. EducationATLAS experimentSettore FIS/01 - Fisica SperimentaleATLAS3. Good healthMassless particleCERN LHC CollHiggs particle: massPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHiggs boson7000: 8000 GeV-cmsFísica nuclearAtlasLhcNeutrinoHiggs particle: decay modesParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASp p: scatteringNuclear and High Energy PhysicsParticle physicsmass spectrum: (4lepton)530 PhysicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2ATLASdetector; LHC; Higgsbosonproduction; diboson530Massless ParticlesNnlo QCDNuclear physics0103 physical sciencesFysikddc:530High Energy Physics010306 general physicsTransverse-MomentumCondensed Matter::Quantum GasesHiggs particle: couplingScience & Technologyhep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaQCD CorrectionsFermion//purl.org/becyt/ford/1.3 [https]Hadron CollidersDiboson ProductionAstronomíavector boson: leptonic decayHADRON-HADRON COLLISIONSProton-Proton CollisionsRoot-S=7 TevHiggs particle: hadroproduction ; Higgs particle: coupling ; vector boson: fusion ; p p: scattering ; CERN LHC Coll ; ATLAS ; Higgs particle: decay modes ; vector boson: pair production ; vector boson: leptonic decay ; mass spectrum: two-photon ; mass spectrum: (4lepton) ; dilepton: mass spectrum ; transverse energy: missing-energy ; Higgs particle: mass ; experimental results ; 7000: 8000 GeV-cmsExperimental High Energy PhysicsHigh Energy Physics::ExperimentCross-Sectionsmass spectrum: two-photonexperimental resultsLeptonBroken Symmetries
researchProduct

Microwave Response of Coaxial Cavities Made of Bulk Magnesium Diboride

2014

We report on the microwave (mw) properties of coaxial cavities built by using bulk MgB2 superconductor prepared by reactive liquid Mg infiltration technology. We have assembled a homogeneous cavity, by using an outer MgB2 cylinder and an inner MgB2 rod, and a hybrid cavity by using an outer copper cylinder and the same MgB2 rod as inner conductor. By the analysis of the resonance curves, in the different resonant modes, we have determined the microwave surface resistance, Rs, of the MgB2 materials as a function of the temperature and the frequency, in the absence of DC magnetic fields. At T = 4.2 K and f = 2.5 GHz, by a mw pulsed technique, we have determined the quality factor of the homog…

SuperconductivityMaterials scienceCondensed Matter - SuperconductivityMicrowave ResponseMicrowave Coaxial CavitieFOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsConductorMagnetic fieldSuperconductivity (cond-mat.supr-con)chemistry.chemical_compoundchemistryQ factorMagnesium DiborideMagnesium diborideElectrical and Electronic EngineeringCoaxialComposite materialSheet resistanceMicrowaveIEEE Transactions on Applied Superconductivity
researchProduct

Superconducting Microwave Cavity Made of Bulk MgB2

2006

We report the successful manufacture and characterization of a microwave resonant cylindrical cavity made of bulk MgB2 superconductor (Tc = 38.5 K), which has been produced by the Reactive Liquid Mg Infiltration technique. The quality factor of the cavity for the TE011 mode, resonating at 9.79 GHz, has been measured as a function of the temperature. At T = 4.2 K, the unloaded quality factor is 2.2x10^5; it remains of the order of 10^5 up to T ~ 30 K. We discuss the potential performance improvements of microwave cavities built from bulk MgB2 materials produced by reactive liquid Mg infiltration.

SuperconductivityMaterials scienceCondensed matter physicsCondensed Matter - SuperconductivitySettore FIS/01 - Fisica SperimentaleMetals and AlloysFOS: Physical sciencesCondensed Matter PhysicsInfiltration (HVAC)Superconductivity (cond-mat.supr-con)INFILTRATIONMaterials ChemistryCeramics and CompositesMAGNESIUM DIBORIDEElectrical and Electronic EngineeringMicrowaveMicrowave cavity
researchProduct

Effects of Weak Links in the Nonlinear Microwave Response of MgB2 Superconductor

2006

We report experimental results of second-harmonic (SH) response at microwave frequency in several ceramic MgB2 samples, prepared by different methods. The SH signal has been investigated as a function of the temperature and DC magnetic field. The investigation has been carried out at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. We show that the low-temperature SH emission is ascribable to processes involving weak links. Comparison among the peculiarities of the SH signal radiated by the different samples shows that the presence of weak links strongly depends on the sample preparation method, as well as the purity and morphology of …

Superconductivitymicrowave responseCondensed Matter - Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter - SuperconductivitySettore FIS/01 - Fisica SperimentaleMicrowave responseMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMicrowave frequencyCondensed Matter Physicsweak links.SignalElectronic Optical and Magnetic MaterialsMagnetic fieldharmonic generationSuperconductivity (cond-mat.supr-con)Nonlinear systemmagnesium diboridevisual_artCondensed Matter::Superconductivityvisual_art.visual_art_mediumSample preparationCeramic
researchProduct