Search results for "DIMENSION"
showing 10 items of 2766 documents
Efficient unsupervised clustering for spatial bird population analysis along the Loire river
2015
International audience; This paper focuses on application and comparison of Non Linear Dimensionality Reduction (NLDR) methods on natural high dimensional bird communities dataset along the Loire River (France). In this context, biologists usually use the well-known PCA in order to explain the upstream-downstream gradient.Unfortunately this method was unsuccessful on this kind of nonlinear dataset.The goal of this paper is to compare recent NLDR methods coupled with different data transformations in order to find out the best approach. Results show that Multiscale Jensen-Shannon Embedding (Ms JSE) outperform all over methods in this context.
The on-line curvilinear component analysis (onCCA) for real-time data reduction
2015
Real time pattern recognition applications often deal with high dimensional data, which require a data reduction step which is only performed offline. However, this loses the possibility of adaption to a changing environment. This is also true for other applications different from pattern recognition, like data visualization for input inspection. Only linear projections, like the principal component analysis, can work in real time by using iterative algorithms while all known nonlinear techniques cannot be implemented in such a way and actually always work on the whole database at each epoch. Among these nonlinear tools, the Curvilinear Component Analysis (CCA), which is a non-convex techni…
Computation Cluster Validation in the Big Data Era
2017
Data-driven class discovery, i.e., the inference of cluster structure in a dataset, is a fundamental task in Data Analysis, in particular for the Life Sciences. We provide a tutorial on the most common approaches used for that task, focusing on methodologies for the prediction of the number of clusters in a dataset. Although the methods that we present are general in terms of the data for which they can be used, we offer a case study relevant for Microarray Data Analysis.
A local complexity based combination method for decision forests trained with high-dimensional data
2012
Accurate machine learning with high-dimensional data is affected by phenomena known as the “curse” of dimensionality. One of the main strategies explored in the last decade to deal with this problem is the use of multi-classifier systems. Several of such approaches are inspired by the Random Subspace Method for the construction of decision forests. Furthermore, other studies rely on estimations of the individual classifiers' competence, to enhance the combination in the multi-classifier and improve the accuracy. We propose a competence estimate which is based on local complexity measurements, to perform a weighted average combination of the decision forest. Experimental results show how thi…
An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models
2020
In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.
GenClust: A genetic algorithm for clustering gene expression data
2005
Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …
Data Analysis and Bioinformatics
2007
Data analysis methods and techniques are revisited in the case of biological data sets. Particular emphasis is given to clustering and mining issues. Clustering is still a subject of active research in several fields such as statistics, pattern recognition, and machine learning. Data mining adds to clustering the complications of very large data-sets with many attributes of different types. And this is a typical situation in biology. Some cases studies are also described.
Distance Functions, Clustering Algorithms and Microarray Data Analysis
2010
Distance functions are a fundamental ingredient of classification and clustering procedures, and this holds true also in the particular case of microarray data. In the general data mining and classification literature, functions such as Euclidean distance or Pearson correlation have gained their status of de facto standards thanks to a considerable amount of experimental validation. For microarray data, the issue of which distance function works best has been investigated, but no final conclusion has been reached. The aim of this extended abstract is to shed further light on that issue. Indeed, we present an experimental study, involving several distances, assessing (a) their intrinsic sepa…
Structural clustering of millions of molecular graphs
2014
We propose an algorithm for clustering very large molecular graph databases according to scaffolds (i.e., large structural overlaps) that are common between cluster members. Our approach first partitions the original dataset into several smaller datasets using a greedy clustering approach named APreClus based on dynamic seed clustering. APreClus is an online and instance incremental clustering algorithm delaying the final cluster assignment of an instance until one of the so-called pending clusters the instance belongs to has reached significant size and is converted to a fixed cluster. Once a cluster is fixed, APreClus recalculates the cluster centers, which are used as representatives for…
Making nonlinear manifold learning models interpretable: The manifold grand tour
2015
Smooth nonlinear topographic maps of the data distribution to guide a Grand Tour visualisation.Prioritisation of data linear views that are most consistent with data structure in the maps.Useful visualisations that cannot be obtained by other more classical approaches. Dimensionality reduction is required to produce visualisations of high dimensional data. In this framework, one of the most straightforward approaches to visualising high dimensional data is based on reducing complexity and applying linear projections while tumbling the projection axes in a defined sequence which generates a Grand Tour of the data. We propose using smooth nonlinear topographic maps of the data distribution to…