Search results for "DIMERIZATION"

showing 10 items of 143 documents

SiRNA-mediated selective inhibition of mutant keratin mRNAs responsible for the skin disorder pachyonychia congenita.

2006

RNA interference offers a novel approach for treating genetic disorders including the rare monogenic skin disorder pachyonychia congenita (PC). PC is caused by mutations in keratin 6a (K6a), K6b, K16, and K17 genes, including small deletions and single nucleotide changes. Transfection experiments of a fusion gene consisting of K6a and a yellow fluorescent reporter (YFP) resulted in normal keratin filament formation in transfected cells as assayed by fluorescence microscopy. Similar constructs containing a single nucleotide change (N171K) or a three-nucleotide deletion (N171del) showed keratin aggregate formation. Mutant-specific small inhibitory RNAs (siRNAs) effectively targeted these site…

Small interfering RNABiologymedicine.disease_causeTransfectionGeneral Biochemistry Genetics and Molecular BiologyFusion geneHistory and Philosophy of ScienceCell Line TumorKeratinmedicinePachyonychia congenitaHumansRNA MessengerRNA Small Interferingchemistry.chemical_classificationMutationKeratin Filamentintegumentary systemGeneral NeuroscienceGenetic Diseases InbornKeratin-6RNAKeratin 6Amedicine.diseaseMolecular biologychemistryPachyonychia CongenitaMutationMutagenesis Site-DirectedKeratinsDimerizationAnnals of the New York Academy of Sciences
researchProduct

Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process

2000

The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane‐mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C‐terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement o…

Models MolecularStereochemistryProtein ConformationMutantMolecular Sequence DataBiochemistryProtein structureGlycophorinAmino Acid SequenceGlycophorinsMolecular BiologyProtein secondary structurePeptide sequencebiologyChemistryC-terminusProteïnes de membranaMembrane ProteinsTransmembrane proteinPeptide FragmentsBiochemistryMembrane proteinbiology.proteinDimerizationResearch Article
researchProduct

Ferrocene compounds: methyl 1′-aminoferrocene-1-carboxylate

2010

The title compund, [Fe(C(5)H(6)N)(C(7)H(7)O(2))], features one strong intermolecular hydrogen bond of the type N-H...O=C [N...O = 3.028 (2) A] between the amine group and the carbonyl group of a neighbouring molecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H-atom acceptor in the formation of a second, weaker, hydrogen bond of the type C-H...O=C [C...O = 3.283 (2) A] with the methyl group of the ester group of a second neighbouring molecule at (x, -y - 1/2, z - 1/2). The methyl group also acts as a weak hydrogen-bond donor, symmetry-related to the latter described C-H...O=C interaction, to a third molecule at (x, -y - 1/2, z + 1/2) t…

Models MolecularHydrogen bondStereochemistryDimerCarboxylic AcidsMolecular ConformationHydrogen BondingGeneral MedicineAcceptorGeneral Biochemistry Genetics and Molecular BiologyCrystallographychemistry.chemical_compoundchemistryFerroceneCyclopentadienyl complexMoleculeFerrous CompoundsDimerizationMethyl groupCoordination geometryActa Crystallographica Section C Crystal Structure Communications
researchProduct

The tetrameric α-helical membrane protein GlpF unfolds via a dimeric folding intermediate.

2011

Many membrane proteins appear to be present and functional in higher-order oligomeric states. While few studies have analyzed the thermodynamic stability of α-helical transmembrane (TM) proteins under equilibrium conditions in the past, oligomerization of larger polytopic monomers has essentially not yet been studied. However, it is vital to study the folding of oligomeric membrane proteins to improve our understanding of the general mechanisms and pathways of TM protein folding. To investigate the folding and stability of the aquaglyceroporin GlpF from Escherichia coli, unfolding of the protein in mixed micelles was monitored by steady-state fluorescence and circular dichroism spectroscopy…

Gel electrophoresisCircular dichroismProtein FoldingChemistryCircular DichroismEscherichia coli ProteinsMembrane ProteinsAquaporinsBiochemistryMicelleTransmembrane proteinProtein Structure SecondaryFolding (chemistry)CrystallographyKineticsMembrane proteinBiophysicsEscherichia coliProtein foldingChemical stabilityDimerizationProtein UnfoldingBiochemistry
researchProduct

Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-…

2007

Photosynthetic light-harvesting complexes (LHCs) are assembled from apoproteins (Lhc proteins) and non-covalently attached pigments. Despite a considerable amino acid sequence identity, these proteins differ in their oligomerization behavior. To identify the amino acid residues determining the heterodimerization of Lhca1 and Lhca4 to form LHCI-730, we mutated the poorly conserved second transmembrane helix of the two subunits. Mutated genes were expressed in Escherichia coli and the resultant proteins were refolded in vitro and subsequently analyzed by gel electrophoresis. Replacement of the entire second helix in Lhca4 by the one of Lhca3 abolished heterodimerization, whereas it had no eff…

ChlorophyllModels MolecularMolecular Sequence DataLight-Harvesting Protein ComplexesBiologyProtein Structure SecondarySerineSolanum lycopersicumStructural BiologyChlorophyll bindingConsensus sequenceHistidineHomology modelingAmino Acid SequenceAmino AcidsProtein Structure QuaternaryMolecular BiologyPeptide sequenceHistidinePlant Proteinschemistry.chemical_classificationPhotosystem I Protein ComplexAmino acidTransmembrane domainProtein SubunitschemistryBiochemistryMutagenesisChlorophyll Binding ProteinsDimerizationSequence AlignmentJournal of molecular biology
researchProduct

Reasons for the exclusive formation of heterodimeric capsules between tetra-tolyl and tetra-tosylurea calix[4]arenes

2007

The selective heterodimerization of tetra-tolyl (1a) and tetra-tosylurea (1b) calixarenes, serendipitously found by Rebek et al. (R. K. Castellano, B. H. Kim and J. Rebek, Jr., J. Am. Chem. Soc., 1997, 119, 12671–12672), has been used for the construction of highly sophisticated macrocycles and well-defined supramolecular assemblies. Regrettably, hitherto, neither the exact structure of these heterodimers nor the reason for their exclusive formation is known. We present molecular dynamics simulations using the AMBER force field in explicit chloroform solvent for the two homodimers, the heterodimer and the two uncomplexed tetra-urea calixarenes. The rigid rotation about the C–S–N–C bond of t…

Models MolecularSteric effectsMagnetic Resonance SpectroscopyMolecular StructurebiologyChemistryHydrogen bondStereochemistryOrganic ChemistrySupramolecular chemistryCapsulesHydrogen Bondingbiology.organism_classificationBiochemistrySolutionsTosyl CompoundsSolventMolecular dynamicsCalixareneProton NMRUreaTetraCalixarenesPhysical and Theoretical ChemistryDimerizationOrganic & Biomolecular Chemistry
researchProduct

ERa dimerization: a key factor for the weak estrogenic activity of an ERa modulator unable to compete with estradiol in binding assays

2016

PMID: 27400858; International audience; AbstractEstrothiazine (ESTZ) is a weak estrogen sharing structural similarities with coumestrol. ESTZ failed to compete with [3H]17β-estradiol ([3H]17β-E2) for binding to the estrogen receptor α (ERα), questioning its ability to interact with the receptor. However, detection by atomic force spectroscopy (AFS) of an ESTZ-induced ERα dimerization has eliminated any remaining doubts. The effect of the compound on the proliferation of ERα-positive and negative breast cancer cells confirmed the requirement of the receptor. The efficiency of ESTZ in MCF-7 cells was weak without any potency to modify the proliferation profile of estradiol and coumestrol. Gro…

0301 basic medicinemedicine.medical_specialtyTranscription Geneticmedicine.drug_class[SDV]Life Sciences [q-bio]ThiazinesEstrogen receptorBreast NeoplasmsPhytoestrogensCoumestrol[ CHIM ] Chemical SciencesBiochemistry[SPI.MAT]Engineering Sciences [physics]/Materials03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicinemedicineHumans[CHIM]Chemical SciencesBinding site[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsReceptorMolecular BiologyEstrogen receptor beta[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Binding Sites[ SDV ] Life Sciences [q-bio]EstradiolSpectrophotometry AtomicEstrogen Receptor alphaCell BiologyCell biologyTranscription Factor AP-1030104 developmental biologyEndocrinologychemistryMechanism of actionEstrogen030220 oncology & carcinogenesisMCF-7 CellsFemalemedicine.symptomDimerizationEstrogen receptor alphaProtein Binding
researchProduct

Inhibitor-Induced Dimerization of an Essential Oxidoreductase from African Trypanosomes

2018

Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, pro…

TrypanosomaProtein ConformationSpermidineDimerTrypanosoma brucei bruceiAntiprotozoal AgentsMolecular Dynamics SimulationTrypanosoma brucei010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundThioredoxinsBacterial ProteinsIn vivoOxidoreductaseAnimalsHumansEnzyme Inhibitorschemistry.chemical_classificationbiology010405 organic chemistryHydrogen PeroxideGeneral ChemistryNuclear magnetic resonance spectroscopyLigand (biochemistry)biology.organism_classificationGlutathione0104 chemical sciencesEnzymechemistryBiochemistryDrug DesignChemically induced dimerizationProtein MultimerizationOxidoreductasesOxidation-ReductionProtein BindingAngewandte Chemie International Edition
researchProduct

The Role of Adenine Excimers in the Photophysics of Oligonucleotides

2009

Energies and structures of different arrangements of the stacked adenine homodimer have been computed at the ab initio CASPT2 level of theory in isolation and in an aqueous environment. Adenine dimers are shown to form excimer singlet states with different degrees of stacking and interaction. A model for a 2-fold decay dynamics of adenine oligomers can be supported in which, after initial excitation in the middle UV range, unstacked or slightly stacked pairs of nucleobases will relax by an ultrafast internal conversion to the ground state, localizing the excitation in the monomer and through the corresponding conical intersection with the ground state. On the other hand, long-lifetime intra…

Models MolecularPhotochemistryUltraviolet RaysMolecular ConformationOligonucleotidesAb initioPhotochemistryExcimerBiochemistryCatalysisNucleobaseColloid and Surface ChemistryUltrafast laser spectroscopySinglet stateQuantitative Biology::BiomoleculesChemistryAdenineDNAGeneral ChemistryConical intersectionInternal conversion (chemistry)Chemical physicsNucleic Acid ConformationSpectrophotometry UltravioletGround stateDimerizationHydrogenJournal of the American Chemical Society
researchProduct

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protei…

2008

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functiona…

Cell SurvivalRecombinant Fusion Proteinsanimal diseasesSOD1MutantProtein aggregationAnimals Genetically ModifiedProtein CarbonylationSuperoxide dismutaseMicechemistry.chemical_compoundSuperoxide Dismutase-1Cell Line TumorGeneticsAnimalsHumansAmino Acid SequenceCaenorhabditis elegansMolecular BiologyGenetics (clinical)Motor NeuronsbiologySuperoxide DismutaseSuperoxideAmyotrophic Lateral SclerosisWild typenutritional and metabolic diseasesHydrogen PeroxideGeneral MedicineFusion proteinProtein Structure Tertiarynervous system diseasesCell biologyAmino Acid Substitutionnervous systemchemistryBiochemistrybiology.proteinDismutaseDimerizationHuman Molecular Genetics
researchProduct