Search results for "DIO"
showing 10 items of 27885 documents
Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station
2019
In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on the intercomparison of soil moisture monitoring from Global Navigation Satellite System Reflectometry (GNSS-R) signals and passive L-band microwave radiometer observations at the Valencia Anchor Station is introduced. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and a dual-pol down-looking antenna for receiving LHCP (left-hand circular polarization) and RHCP (right-hand circular polarization) reflected signals from the soil surface. Data were collected from the three different antennas through the two channels of Oceanpal GNSS-R receiver and, in addition, calibration …
SMOS Level-2 Soil Moisture Product Evaluation in Rain-Fed Croplands of the Pampean Region of Argentina
2016
A field campaign was carried out to evaluate the Soil Moisture (SM) MIR-SMUDP2 product (v5.51) generated from the data of the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) aboard the Soil Moisture and Ocean Salinity (SMOS) mission. The study area was the Pampean Region of Argentina, which was selected because it is a vast area of flatlands containing quite homogeneous rain-fed croplands, which are considered SMOS nominal land uses and hardly affected by radio-frequency interference contamination. Transects of ground handheld SM measurements were performed using ThetaProbe ML2x probes within four Icosahedral Snyder Equal Area Earth (ISEA) grid nodes, where permanent SM statio…
The WISE 2000 and 2001 Field Experiments in Support of the SMOS Mission:Sea Surface L-Band Brightness Temperature Observations and Their Application …
2004
Camps, Adriano ... et al.-- 20 pages, 16 figures, 3 tables
Two-year global simulation of L-band brightness temperatures over land
2003
International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…
The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software
2016
The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possib…
Generation of global vegetation products from EUMETSAT AVHRR/METOP satellites
2020
We describe the methodology applied for the retrieval of global LAI, FAPAR and FVC from Advanced Very High Resolution Radiometer (AVHRR) onboard the Meteorological-Operational (MetOp) polar orbiting satellites also known as EUMETSAT Polar System (EPS). A novel approach has been developed for the joint retrieval of three parameters (LAI, FVC, and FAPAR) instead of training one model per parameter. The method relies on multi-output Gaussian Processes Regression (GPR) trained over PROSAIL EPS simulations. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. We describe the ma…
Derivation of global vegetation biophysical parameters from EUMETSAT Polar System
2020
Abstract This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological–Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key par…
Lidar sounding of volcanic plumes
2013
ABSTRACT Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO 2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO 2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on r…
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
2013
Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…