Search results for "DISPLACEMENT"
showing 10 items of 433 documents
Mathematical Model of Solid Food Pasteurization by Ohmic Heating: Influence of Process Parameters
2013
Pasteurization of a solid food undergoing ohmic heating has been analysed by means of a mathematical model, involving the simultaneous solution of Laplace’s equation, which describes the distribution of electrical potential within a food, the heat transfer equation, using a source term involving the displacement of electrical potential, the kinetics of inactivation of microorganisms likely to be contaminating the product. In the model, thermophysical and electrical properties as function of temperature are used. Previous works have shown the occurrence of heat loss from food products to the external environment during ohmic heating. The current model predicts that, when temperature gradient…
The importance of the posterior joint space for functional mandibular movements: A laboratory cross-sectional study
2018
Background: The search for the ideal, healthy and reproducible position of the condyles is of utmost importance for dental diagnosis and treatment. Thus, the objective of this laboratory cross-sectional study was to verify the relationship between the posterior joint space and the mandibular lateral movements. Material and Methods: Dental casts from 15 women and 15 men with normal mastication, 28 natural teeth and no history of temporomandibular disorders or pain, were fabricated and mounted on a fully adjustable articulator. From the maximum intercuspal position, condylar displacement was evaluated and measured on the working and nonworking sides during mandibular lateral movement, both to…
ConvLSTM Neural Networks for seismic event prediction in Chile
2021
Predicting seismic risk is a challenging task in order to avoid catastrophic effects. In this work, two models based on Convolutional Network (CNN) and Long Short Term Memory (LSTM) networks are proposed to predict the seismic risk in Chile. In particular, a ConvLSTM and a Multi-column ConvLSTM network are used for the prediction of the average number of seismic events greater than 2,8 magnitude on the Richter scale, in the Chilean regions of Coquimbo and Araucania between the years 2010 and 2017. For this model, the values of the intensity function estimated through an ETAS model and the accumulated displacement prior to a the seismic events are used as inputs. In particular, given the spa…
SAL—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts
2008
Abstract A novel object-based quality measure, which contains three distinct components that consider aspects of the structure (S), amplitude (A), and location (L) of the precipitation field in a prespecified domain (e.g., a river catchment) is introduced for the verification of quantitative precipitation forecasts (QPF). This quality measure is referred to as SAL. The amplitude component A measures the relative deviation of the domain-averaged QPF from observations. Positive values of A indicate an overestimation of total precipitation; negative values indicate an underestimation. For the components S and L, coherent precipitation objects are separately identified in the forecast and obser…
On the instability of an axially moving elastic plate
2010
Problems of stability of an axially moving elastic band travelling at constant velocity between two supports and experiencing small transverse vibrations are considered in a 2D formulation. The model of a thin elastic plate subjected to bending and tension is used to describe the bending moment and the distribution of membrane forces. The stability of the plate is investigated with the help of an analytical approach. In the frame of a general dynamic analysis, it is shown that the onset of instability takes place in the form of divergence (buckling). Then the static forms of instability are investigated, and critical regimes are studied as functions of geometric and mechanical problem param…
Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory
2009
In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself…
A generalized model of elastic foundation based on long-range interactions: Integral and fractional model
2009
The common models of elastic foundations are provided by supposing that they are composed by elastic columns with some interactions between them, such as contact forces that yield a differential equation involving gradients of the displacement field. In this paper, a new model of elastic foundation is proposed introducing into the constitutive equation of the foundation body forces depending on the relative vertical displacements and on a distance-decaying function ruling the amount of interactions. Different choices of the distance-decaying function correspond to different kind of interactions and foundation behavior. The use of an exponential distance-decaying function yields an integro-d…
Long-range interactions in 1D heterogeneous solids with uncertainty
2013
Abstract In this paper, the authors aim to analyze the response of a one-dimensional non-local elastic solid with uncertain Young's modulus. The non-local effects are represented as long-range central body forces between non-adjacent volume elements. Following a non-probabilistic approach, the fluctuating elastic modulus of the material is modeled as an interval field. The analysis is conducted resorting to a novel formulation that confines the overestimation effect involved in interval models. Approximate closed-form expressions are derived for the bounds of the interval displacement field.
One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis
2013
The analysis of one-dimensional non-local elastic solids with uncertain Young's modulus is addressed. Non-local effects are represented as long-range central body forces between non-adjacent volume elements. For comparison purpose, the fluctuating elastic modulus of the material is modeled following both a probabilistic and a non-probabilistic approach. To this aim, a novel definition of the interval field concept, able to limit the overestimation affecting ordinary interval analysis, is introduced. Approximate closed-form expressions are derived for the bounds of the interval displacement field as well as for the mean-value and variance of the stochastic response.
Donation and back-donation in cis- and trans-[(η5-C5H5)Fe(η1-CO)(μ-CO)]2 tautomers: Which relative is more generous? An ETS-NOCV bond analysis
2022
The ETS-NOCV bond analysis has been exploited to quantitatively estimate donation and back-donation properties of [(η5-C5H5)]−, CO, and FeI in the cis-/trans-[(η5-C5H5)Fe(η1-CO)(μ-CO)]2 (cis-I/trans-I) tautomers. Theoretical outcomes indicate that the Fe-CO bond, regardless to the CO monoapto (η1-) or bridging (μ-) coordination, has a sizeable π Fe → CO back-bonding contribution, which is stronger in trans-I than in cis-I. Moreover, [(η5-C5H5)]− has the weakest back-donation acceptor capability. The back-bonding behaviour of the Fe → η1-CO interaction well agrees with the experimental symmetric/antisymmetric infrared νCO (sνηjavax.xml.bind.JAXBElement@fc12185-CO/aνηjavax.xml.bind.JAXBElemen…