Search results for "DISSOCIATION"
showing 10 items of 531 documents
Ab initio multi-reference perturbation theory calculations of the ground and low-lying electronic states of the KRb molecule
2016
The potential energy curves of the low-lying electronic states correlating up to the limit K(4p) + Rb(5s) of KRb molecule have been calculated using the multi-reference perturbation theory method at the CASSCF/ XMCQDPT2 level of theory without and with spin–orbit coupling. The calculated parameters of the ground X 1 R + state are in the best agreement among all previously performed ab initio calculations for the KRb molecule. The calculated vibrational intervals of the ground electronic term of the 39 K 85 Rb molecule describe the experiment with the accuracy within ±1 cm ?1 . The calculated intensities of the 2 1 R + (v 0 = 3, J 0 = 26) ? X 1 R + (v 00 = 0...24, J 00 = 25, 27) transitions …
On the N1-H and N3-H Bond Dissociation in Uracil by Low Energy Electrons: A CASSCF/CASPT2 Study.
2015
The dissociative electron-attachment (DEA) phenomena at the N1-H and N3-H bonds observed experimentally at low energies (<3 eV) in uracil are studied with the CASSCF/CASPT2 methodology. Two valence-bound π(-) and two dissociative σ(-) states of the uracil anionic species, together with the ground state of the neutral molecule, are proven to contribute to the shapes appearing in the experimental DEA cross sections. Conical intersections (CI) between the π(-) and σ(-) are established as the structures which activate the DEA processes. The N1-H and N3-H DEA mechanisms in uracil are described, and experimental observations are interpreted on the basis of two factors: (1) the relative energy of …
Hexacarbonyls of Mo, W, and Sg: Metal–CO Bonding Revisited
2017
Calculations of the first bond dissociation energies (FBDEs) and other molecular properties of M(CO)6, where M = Mo, W, and Sg, have been performed using a variety of nonrelativistic and relativistic methods, such as ZORA-DFT, X2c+AMFI-CCSD(T), and Dirac–Coulomb density functional theory. The aim of the study is to assist experiments on the measurements of the FBDE of Sg(CO)6. We have found that, different from the results published earlier, the metal–CO bond in Sg(CO)6 should be weaker than that in W(CO)6. A comparison of the relativistic and nonrelativistic FBDE values, as well as molecular orbital and vibrational frequency analyses within both the nonrelativistic and relativistic approac…
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Carbonyl compounds of Tc, Re, and Bh: Electronic structure, bonding, and volatility.
2018
Calculations of molecular properties of M(CO)5 and MH(CO)5, where M = Tc, Re, and Bh, and of the products of their decomposition, M(CO)4 and MH(CO)4, were performed using density functional theory and coupled-cluster methods implemented in the relativistic program suits such as ADF, DIRAC, and ReSpect. The calculated first M—CO bond dissociation energies (FBDEs) of Bh(CO)5 and BhH(CO)5 turned out to be significantly weaker than those of the corresponding Re homologs. The reason for that is the relativistic destabilization and expansion of the 6d AOs, responsible for weaker σ-forth and π-back donations in the Bh compounds. The relativistic FBDEs of M(CO)5 have, therefore, a Λ-shape behavior …
Matrix isolation and quantum chemical studies on the H2O2–SO2complex
2004
Complexation and photochemical reactions of hydrogen peroxide and sulfur dioxide have been studied in solid Ar, Kr and Xe. Complexes between H2O2 and SO2 are characterized using Fourier transform infrared spectroscopy and ab initio calculations. In solid Ar, the H2O2–SO2 complex absorptions are found at wavenumbers of 3572.8, 3518.7, 3511.2, 3504.3, 1340.3, 1280.2 and 1149.9 cm−1. In Kr and Xe matrices, the bonded OH stretching frequencies deviate from the values in Ar, and we propose that the matrix surrounding influences the structure of the H2O2–SO2 complex. UV photolysis of the H2O2–SO2 was also studied in solid Ar, Kr and Xe. This photolysis produces mainly a complex between sulfur tri…
Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony.
2016
Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. …
Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes
2003
International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…
A novel MALDI-MS approach for the analysis of neutral metallosupramolecular architectures
2011
Matrix assisted laser desorption/ionisation mass spectrometry (MALDI-MS) methods have been developed for the characterisation of neutral [2×2] metallogrids derived fromdiimine, dihydrazone and diacylhydrazone ligands. Such grids may be protonated in solution to give cationic species but in most cases these are labile, so that rather delicate conditions are required for observation of the intact metallogrids as monoprotonated derivatives in the gas phase. As a MALDI matrix, 2,4,6-trihydroxyacetophenone (THAP) is sufficiently acidic to enable monoprotonation of the grids unaccompanied by dissociation, and if the grid sample is initially deposited by a layering technique to avoid any prelimina…
A study on stabilization of HHeF molecule upon complexation with Xe atoms
2004
In the present work, we computationally study energetic stabilization of HHeF by its complexation with Xe atoms. For the studied HHeF ��� Xen systems ðn ¼ 1–4; 6Þ, we found a large complexation-induced decrease of energy of HHeF with respect to its dissociation into atoms. As a working hypothesis, we assume that this stabilization effect continues for the larger systems (n > 6) as well. This suggests that dissociation of HHeF via the H–He stretching coordinate might be suppressed and its lifetime might be increased by inserting it into large Xe clusters or matrices. 2004 Elsevier B.V. All rights reserved.