Search results for "DMRG"

showing 2 items of 2 documents

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Statics and dynamics of weakly coupled antiferromagnetic spin-1/2 ladders in a magnetic field

2011

We investigate weakly coupled spin-1/2 ladders in a magnetic field. The work is motivated by recent experiments on the compound (C5H12N)2CuBr4 (BPCB). We use a combination of numerical and analytical methods, in particular the density matrix renormalization group (DMRG) technique, to explore the phase diagram and the excitation spectra of such a system. We give detailed results on the temperature dependence of the magnetization and the specific heat, and the magnetic field dependence of the nuclear magnetic resonance (NMR) relaxation rate of single ladders. For coupled ladders, treating the weak interladder coupling within a mean-field or quantum Monte Carlo approach, we compute the transit…

Strongly Correlated Electrons (cond-mat.str-el)neutronsFOS: Physical sciencesddc:500.2NMRCondensed Matter - Strongly Correlated ElectronsLuttinger liquidspin-1/2 laddersDMRG[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]PACS: 75.10.Jm 75.40.Gb 75.40.Cx 75.30.KzCondensed Matter::Strongly Correlated Electronsbosonization[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]
researchProduct