Search results for "DNA DAMAGE"
showing 10 items of 534 documents
Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?
2007
In mammalian cells, 7,8-dihydro-8-oxoguanine (8-oxoG) and some other oxidative guanine modifications are removed from the DNA by base excision repair, which is initiated by OGG1 protein. We have tested whether this repair is inducible in mouse embryonic fibroblasts (MEFs), MCF-7 breast cancer cells and primary human fibroblasts by a pretreatment with the photosensitizer Ro19-8022 plus light, which generates predominantly 8-oxoG, or with methyl methanesulfonate (MMS), which generates alkylated bases and abasic sites (AP sites). The results indicate that the repair rate of the oxidative guanine modifications induced by the photosensitizer was not increased if a priming dose of the oxidative o…
A nanodosimetric model of radiation-induced clustered DNA damage yields
2010
International audience; We present a nanodosimetric model for predicting the yield of double strand breaks (DSBs) and non-DSB clustered damages induced in irradiated DNA. The model uses experimental ionization cluster size distributions measured in a gas model by an ion counting nanodosimeter or, alternatively, distributions simulated by a Monte Carlo track structure code developed to simulate the nanodosimeter. The model is based on a straightforward combinatorial approach translating ionizations, as measured or simulated in a sensitive gas volume, to lesions in a DNA segment of one-two helical turns considered equivalent to the sensitive volume of the nanodosimeter. The two model paramete…
Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers
2008
Based on CASPT2 results, the present contribution establishes for the first time that cytosine photodimer formation (CC) is mediated along the triplet and singlet manifold by a singlet-triplet crossing, (T1/S0)X, and by a conical intersection, (S1/S0)CI, respectively. The former can be accessed in a barrierless way from a great variety of photochemical avenues and exhibits a covalent single bond between the ethene C6-C6' carbon atoms of each monomer. The efficiency of the stepwise triplet mechanism, however, would be modulated by the effectiveness of the intersystem crossing mechanism. The results provide the grounds for the understanding of the potential photogenotoxicity of endogenous and…
Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond
2019
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and hu…
The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells
2011
Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effe…
The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments.
1995
The low molecular weight GTP-binding proteins RhoA, RhoB, and RhoC are characterized as specific substrates for the ADP-ribosyltransferase C3 from Clostridium botulinum and are supposed to be involved in the organization of the microfilamental network and transformation. rhoB is known to be immediate-early inducible by growth factors and protein-tyrosine kinases. Since increasing evidence indicates overlapping of growth factor- and UV-induced signal pathways, we studied the effect of UV light and other genotoxic agents on early rhoB transcription. Within 30 min after UV irradiation of NIH3T3 cells, the amount of rhoB mRNA increased 3-4-fold. Elevated rhoB mRNA was accompanied by an increase…
The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: A proof-of-concept
2013
Abstract Background and purpose One of the new challenges to improve radiotherapy is to increase the ionizing effect by using nanoparticles. The interest of titanate nanotubes (TiONts) associated with radiotherapy was evaluated in two human glioblastoma cell lines (SNB-19 and U87MG). Materials and methods Titanate nanotubes were synthetized by the hydrothermal treatment of titanium dioxide powder in a strongly basic NaOH solution. The cytotoxicity of TiONts was evaluated on SNB-19 and U87MG cell lines by cell proliferation assay. The internalization of TiONts was studied using Transmission Electron Microscopy (TEM). Finally, the effect of TiONts on cell radiosensitivity was evaluated using …
DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair
2016
Abstract Repair of damaged DNA relies on the recruitment of DNA repair factors in a well orchestrated manner. As a prerequisite, the chromatin needs to be decondensed by chromatin remodelers to allow for binding of repair factors and for DNA repair to occur. Recent studies have implicated members of the SWI/SNF and INO80 families as well as PARP1 in nucleotide excision repair (NER). In this study, we report that the endonuclease DICER is implicated in chromatin decondensation during NER. In response to UV irradiation, DICER is recruited to chromatin in a ZRF1-mediated manner. The H2A–ubiquitin binding protein ZRF1 and DICER together impact on the chromatin conformation via PARP1. Moreover, …
Protecting sensitive patient groups from imaging using ionizing radiation: effects during pregnancy, in fetal life and childhood
2019
The frequency of imaging examinations requiring radiation exposure in children (especially CT) is rapidly increasing. This paper reviews the current evidence in radiation protection in pediatric imaging, focusing on the recent knowledge of the biological risk related to low doses exposure. Even if there are no strictly defined limits for patient radiation exposure, it is recommended to try to keep doses as low as reasonably achievable (the ALARA principle). To achieve ALARA, several techniques to reduce the radiation dose in radiation-sensitive patients groups are reviewed. The most recent recommendations that provide guidance regarding imaging of pregnant women are also summarized, and the…
Protein kinase C controls activation of the DNA integrity checkpoint
2014
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translatio…