Search results for "DNA Helicase"
showing 10 items of 30 documents
Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts fro…
2014
Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N 2-yl)-2-acetylaminofluorene adduct (dG(N 2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is remov…
Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.
2005
Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (≤2 h after exposure) was similar in cells knockout for ATM, PARP, p53, and CSB or defective in DNA-PKcscompared with wild-type cells. The late response however (≥4 h), was drastically reduced in DNA-PKcsand Cockayne's syndrome B (CSB)-deficient cells. Similar results were obtained with human cells lacking DNA-PKc…
Human exome and mouse embryonic expression data implicate ZFHX3, TRPS1, and CHD7 in human esophageal atresia
2020
Introduction Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) occurs approximately 1 in 3.500 live births representing the most common malformation of the upper digestive tract. Only half a century ago, EA/TEF was fatal among affected newborns suggesting that the steady birth prevalence might in parts be due to mutational de novo events in genes involved in foregut development. Methods To identify mutational de novo events in EA/TEF patients, we surveyed the exome of 30 case-parent trios. Identified and confirmed de novo variants were prioritized using in silico prediction tools. To investigate the embryonic role of genes harboring prioritized de novo variants we perfor…
8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) prote…
2008
We have analysed the effect of oxidative guanine lesions on the expression of a transfected reporter gene in mouse embryonic fibroblasts deficient in Cockayne syndrome B protein (Csb) and/or the 8-oxoguanine DNA glycosylase (Ogg1). We used a highly sensitive flow cytometry-based approach and quantitative real-time PCR to measure the changes in gene expression caused by the presence of oxidised guanine residues generated by photosensitisation in the vector DNA. In wild-type cells, small numbers (one or three) of oxidised guanines did not affect gene expression at short times after transfections, whereas progressive reduction of the transgene expression was observed at later time points. Alth…
IS LA-PROTEIN INVOLVED IN AUTOIMMUNIZATION AND INFLAMMATORY EVENTS DURING DISEASE - CHARACTERIZATION OF LA-PROTEIN AS AN UNWINDING ENZYME
1990
The elemental role of iron in DNA synthesis and repair
2017
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron–sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis a…
Expression inactivation of SMARCA4 by microRNAs in lung tumors
2014
SMARCA4 is the catalytic subunit of the SWI/SNF chromatin-remodeling complex, which alters the interactions between DNA and histones and modifies the availability of the DNA for transcription. The latest deep sequencing of tumor genomes has reinforced the important and ubiquitous tumor suppressor role of the SWI/SNF complex in cancer. However, although SWI/SNF complex plays a key role in gene expression, the regulation of this complex itself is poorly understood. Significantly, an understanding of the regulation of SMARCA4 expression has gained in importance due to recent proposals incorporating it in therapeutic strategies that use synthetic lethal interactions between SMARCA4-MAX and SMAR…
Neuroblastoma after Childhood: Prognostic Relevance of Segmental Chromosome Aberrations, ATRX Protein Status, and Immune Cell Infiltration
2014
AbstractNeuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the c…
The Drosophila Cystoblast Differentiation Factor, benign gonial cell neoplasm, Is Related to DExH-box Proteins and Interacts Genetically With bag-of-…
2000
Abstract Selection of asymmetric cell fates can involve both intrinsic and extrinsic factors. Previously we have identified the bag-of-marbles (bam) gene as an intrinsic factor for cystoblast fate in Drosophila germline cells and shown that it requires active product from the benign gonial cell neoplasm (bgcn) gene. Here we present the cloning and characterization of bgcn. The predicted Bgcn protein is related to the DExH-box family of RNA-dependent helicases but lacks critical residues for ATPase and helicase functions. Expression of the bgcn gene is extremely limited in ovaries but, significantly, bgcn mRNA is expressed in a very limited number of germline cells, including the stem cells.…
XRCC5 as a Risk Gene for Alcohol Dependence : Evidence from a Genome-Wide Gene-Set-Based Analysis and Follow-up Studies in Drosophila and Humans
2015
Genetic factors play as large a role as environmental factors in the etiology of alcohol dependence. Although genome-wide association studies (GWAS) enable systematic searches for loci not hitherto implicated in the etiology of alcohol dependence, many true findings may be missed due to correction for multiple testing. The aim of the present study was to circumvent this limitation by searching for biological system-level differences, and then following up these findings in humans and animals. Gene-set based analysis of GWAS data from 1333 cases and 2168 controls identified 19 significantly associated gene-sets of which five could be replicated in an independent sample. Clustered in these ge…