Search results for "DNA Replication"
showing 10 items of 107 documents
Detection of mammalian carcinogens with an immunological DNA synthesis-inhibition test.
1992
There is a close relationship between genotoxicity, mutagenicity and carcinogenicity. But the controversy of which short-term test system best recognizes human carcinogens is still going on. Currently, the Salmonella gene mutation assay ('Ames test') is the most widely used test for the screening of mutagens. However, many in vitro tests hold unsatisfactory validity data, presumably because of the inability of present short-term tests to detect non-genotoxic carcinogens, which are increasingly being brought into focus in the discussions of genesis of cancer. One principle often neglected in this context is the property of genotoxic agents to inhibit replicative DNA synthesis in (proliferati…
Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously.
2005
In the chicken genome, most orthologues of mouse imprinted genes are clustered on macrochromosomes. Only a few orthologues are located in the microchromosome complement. Macrochromosomal and, to a lesser extent, microchromosomal regions containing imprinted gene orthologues exhibit asynchronous DNA replication. We conclude that highly conserved arrays of imprinted gene orthologues were selected during vertebrate evolution, long before these genes were recruited for parent-specific gene expression by genomic imprinting mechanisms. Evidently, the macrochromosome complement provides a better chromatin environment for the establishment of asynchronous DNA replication and imprinted gene expressi…
Mechanisms of human DNA repair: an update.
2003
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metab…
Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair
2019
Abstract The duplication of the eukaryotic genome is an intricate process that has to be tightly safe‐guarded. One of the most frequently occurring errors during DNA synthesis is the mis‐insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error‐free removal of such mis‐incorporated ribonucleotides. If left unrepaired, DNA‐embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventin…
Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi
2020
Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/V…
The elemental role of iron in DNA synthesis and repair
2017
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron–sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis a…
Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection
2012
Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production …
Perlecan-Induced Suppression of Smooth Muscle Cell Proliferation Is Mediated Through Increased Activity of the Tumor Suppressor PTEN
2004
We were interested in the elucidation of the interaction between the heparan sulfate proteoglycan, perlecan, and PTEN in the regulation of vascular smooth muscle cell (SMC) growth. We verified serum-stimulated DNA synthesis, and Akt and FAK phosphorylation were significantly reduced in SMCs overexpressing wild-type PTEN. Our previous studies showed perlecan is a potent inhibitor of serum-stimulated SMC growth. We report in the present study, compared with SMCs plated on fibronectin, serum-stimulated SMCs plated on perlecan exhibited increased PTEN activity, decreased FAK and Akt activities, and high levels of p27, consistent with SMC growth arrest. Adenoviral-mediated overexpression of cons…
Slow and fast evolving endosymbiont lineages: positive correlation between the rates of synonymous and nonsynonymous substitution
2015
The availability of complete genome sequences of bacterial endosymbionts with strict vertical transmission to the host progeny opens the possibility to estimate molecular evolutionary rates in different lineages and understand the main biological mechanisms influencing these rates. We have compared the rates of evolution for non-synonymous and synonymous substitutions in nine bacterial endosymbiont lineages, belonging to four clades (Baumannia, Blochmannia, Portiera, and Sulcia). The main results are the observation of a positive correlation between both rates with differences among lineages of up to three orders of magnitude and that the substitution rates decrease over long endosymbioses.…
Mitochondrial DNA Replication in Health and Disease
2011
Mitochondria are dynamic, semi-autonomous organelles that play a diverse role in cellular physiopathology, being involved in bioenergetics, ROS generation/signaling and redox balance, β-oxidation of free fatty acids, Ca2+ homeostasis, thermogenesis, and essential anabolic pathways (fatty acids, cholesterol, urea, haem and bile acids). They contain their own, mitochondrial DNA (mtDNA) which is one of the main points in favor of the hypothesis of the endosymbiotic origin of these organelles (Lang et al., 1999). The human mitochondrial genome, a 16.5 kb circular DNA consisting of a heavy and a light chain, contains 37 genes, 13 of which encode proteins involved in the mitochondrial electron tr…