Search results for "DNA damage"

showing 10 items of 534 documents

Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction

2020

Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1&ndash

0301 basic medicineautophagyRMCell cycle checkpointDNA RepairDNA damageArtesunateCell Cycle ProteinsArticlegrowth inhibition03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumormedicineHumansddc:610Medicine Chinese Traditionalskin and connective tissue diseaseslcsh:QH301-705.5Cell ProliferationCisplatinartesunate (ART)Cell growthAutophagyapoptosisGeneral MedicineCell cycleG1 Phase Cell Cycle Checkpoints030104 developmental biologychemistrylcsh:Biology (General)Urinary Bladder NeoplasmsApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchbladder cancer (BCa)Growth inhibitioncisplatin resistanceMicrotubule-Associated Proteinsmedicine.drug
researchProduct

2017

AbstractThe E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or …

0301 basic medicinechemistry.chemical_classificationCancer ResearchDNA ligasebiologyDNA damageImmunologyCyclin ACell BiologyCell cycleUbiquitin ligase03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologyBiochemistryUbiquitinchemistrybiology.proteinbiological phenomena cell phenomena and immunityE2FS phaseCell Death and Disease
researchProduct

Polyphosphate Reverses the Toxicity of the Quasi-Enzyme Bleomycin on Alveolar Endothelial Lung Cells In Vitro

2021

Simple Summary Bleomycin (BLM) is a medication introduced used to treat various types of cancer, including testicular cancer, ovarian cancer, and Hodgkin’s disease. Its most serious side effect is pulmonary fibrosis and impaired lung function. Using A549 human lung cells it is shown that, in parallel to an increased cell toxicity and DNA damage, BLM causes a marked enlargement of the cell nucleus. This effect is abolished by inorganic polyphosphate (polyP), if this physiological polymer is administered together with BLM. The detoxification of BLM is–most likely–caused by the upregulation of the gene encoding the BLM hydrolase which inactivates BLM in vitro and in vivo. This study contribute…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesCancer ResearchDNA damageBleomycinlcsh:RC254-282Article03 medical and health scienceschemistry.chemical_compound0302 clinical medicineanti-SARS-CoV-2 activityDownregulation and upregulationprevention of fibrosischemistry.chemical_classificationbleomycinpulmonary fibrosisurogenital systemChemistryCell growthCOVID-19nutritional and metabolic diseasespolyphosphatelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensMolecular biologyIn vitroChromatin030104 developmental biologyEnzymeOncology030220 oncology & carcinogenesisToxicityCancers
researchProduct

Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin‐1β

2019

Melatonin is the main secretory product of the pineal gland, and it is involved in the regulation of periodic events. A melatonin production independent of the photoperiod is typical of the gut. However, the local physiological role of melatonin at the intestinal tract is poorly characterized. In this study, we evaluated the anti-inflammatory activities of melatonin in an in vitro model of inflamed intestinal epithelium. To this purpose, we assessed different parameters usually associated with intestinal inflammation using IL-1 beta-stimulated Caco-2 cells. Differentiated monolayers of Caco-2 cells were preincubated with melatonin (1 nmol/L-50 mu mol/L) and then exposed to IL-1 beta. After …

0301 basic medicineendocrine systemmedicine.medical_specialtyantioxidantDNA damageInterleukin-1betainflammatory bowel diseasesdietary supplementsMelatonin03 medical and health sciencesPineal gland0302 clinical medicineEndocrinologyCell surface receptorSettore BIO/10 - BiochimicaInternal medicinemedicineHumansMelatoninInflammationN-acetyl-5-methoxy-tryptamineInterleukin-6Chemistryantioxidants; dietary supplements; DNA damage; DNA methylation; inflammatory bowel diseases; N-acetyl-5-methoxy-tryptamine; NF-κB activationInterleukin-8AntagonistCell DifferentiationEpithelial CellsDNA MethylationSettore CHIM/08 - Chimica FarmaceuticaIntestinal epitheliumIntestinesSettore BIO/18 - Geneticaantioxidants030104 developmental biologyEndocrinologymedicine.anatomical_structureNF-κB activationCyclooxygenase 2dietary supplementParacellular transportDNA damageCaco-2 CellsLuzindolehormones hormone substitutes and hormone antagonists030217 neurology & neurosurgerySignal Transductionmedicine.drugJournal of Pineal Research
researchProduct

RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation

2018

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2δGFAPmice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results…

0301 basic medicinelcsh:Immunologic diseases. AllergyMaleEncephalomyelitis Autoimmune ExperimentalAicardi–Goutières syndromeRNase PDNA damageImmunologyRibonuclease HFluorescent Antibody TechniqueAicardi-goutières Syndrome ; Cellular Senescence ; Dna Damage ; Interferon Signature ; Rnase H2BiologyNervous System MalformationsAutoimmune Diseases03 medical and health sciencesMiceAutoimmune Diseases of the Nervous SystemNucleic AcidsmedicineImmunology and Allergycellular senescenceAnimalsRibonucleaseNeuroinflammationCells CulturedOriginal ResearchInflammationMice KnockoutInnate immune systemBrainmedicine.diseaseMolecular biologyImmunohistochemistryDisease Models Animal030104 developmental biologymedicine.anatomical_structurePhenotypeinterferon signatureAstrocytesKnockout mousebiology.proteinAicardi–Goutières syndromeDNA damageFemalelcsh:RC581-607RNase H2BiomarkersAstrocyteFrontiers in Immunology
researchProduct

Genotoxicity and Epigenotoxicity of Carbazole-Derived Molecules on MCF-7 Breast Cancer Cells

2021

The carbazole compounds PK9320 (1-(9-ethyl-7-(furan-2-yl)-9H-carbazol-3-yl)-N-methylmethanamine) and PK9323 (1-(9-ethyl-7-(thiazol-4-yl)-9H-carbazol-3-yl)-N-methylmethanamine), second-generation analogues of PK083 (1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine), restore p53 signaling in Y220C p53-mutated cancer cells by binding to a mutation-induced surface crevice and acting as molecular chaperones. In the present paper, these three molecules have been tested for mutant p53-independent genotoxic and epigenomic effects on wild-type p53 MCF-7 breast adenocarcinoma cells, employing a combination of Western blot for phospho-γH2AX histone, Comet assay and methylation-sensitive arbitrarily pr…

0301 basic medicinemedicine.disease_causeEpigenesis GeneticHistoneslcsh:Chemistry0302 clinical medicineSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyEpigenomicsDNA methylationbiologyChemistryGeneral Medicine3. Good healthComputer Science Applicationscarbazole derivativeHistone030220 oncology & carcinogenesisDNA methylationMCF-7 CellsFemaleepigeneticSignal TransductionCarbazolesAntineoplastic AgentsBreast NeoplasmsArticleCatalysisInorganic Chemistry03 medical and health sciencesbreast cancermedicineHumansEpigeneticsPhysical and Theoretical ChemistryMolecular BiologyepigeneticsOrganic Chemistrygenomic instabilityComet assaySettore BIO/18 - Genetica030104 developmental biologylcsh:Biology (General)lcsh:QD1-999MCF-7carbazole derivativesCancer cellbiology.proteinCancer researchTumor Suppressor Protein p53GenotoxicityDNA DamageMutagensInternational Journal of Molecular Sciences
researchProduct

Physical Exercise and DNA Injury

2017

Regular, low-intensity physical activity is currently advocated for lowering the risk of developing many acute and especially chronic diseases. However, several lines of evidence attest that strenuous exercise may enhance inflammation and trigger the generation of free radical-mediated damage, thus overwhelming the undisputable benefits of regular, medium-intensity physical activity. Since reactive oxygen species are actively generated during high-intensity exercise, and these reactive compounds are known to impact DNA stability, we review here the current evidence about strenuous exercise and DNA injury. Despite the outcome of the various studies cannot be pooled due to considerable variat…

0301 basic medicinemedicine.medical_specialtybusiness.industryDNA damageStrenuous exercisePhysical activityPhysical exercise030229 sport sciences03 medical and health sciences030104 developmental biology0302 clinical medicinePhysical medicine and rehabilitationDNA stabilitymedicineExercise intensityExertionIntensive care medicinebusinessDNA injury
researchProduct

CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells.

2017

ObjectiveCancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies.DesignTo discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein mic…

0301 basic medicinep53DNA ReplicationCELL CYCLE CONTROLDNA damageColorectal cancerColonmedicine.medical_treatmentAntineoplastic AgentsBiologyBioinformaticsmedicine.disease_causeDNA DAMAGETargeted therapy03 medical and health sciencesCancer stem cellCell Line TumormedicineHumansCHEK11506DRUG DEVELOPMENTOligonucleotide Array Sequence AnalysisMutationCOLORECTAL CANCERSettore MED/06 - ONCOLOGIA MEDICAGastroenterologyCHEMOTHERAPYmedicine.diseaseImmunohistochemistryPrexasertib030104 developmental biologyPyrazinesCheckpoint Kinase 1MutationCancer researchNeoplastic Stem CellsPyrazolesStem cellTumor Suppressor Protein p53Colorectal NeoplasmsGut
researchProduct

Wip1 phosphatase: between p53 and MAPK kinases pathways.

2016

IF 5.008; International audience; Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical com…

0301 basic medicinep53Programmed cell deathDNA damagetumor suppressorPhosphatase[SDV.CAN]Life Sciences [q-bio]/Cancer[SDV.BC]Life Sciences [q-bio]/Cellular BiologyReviewPyruvate dehydrogenase phosphataseBiologyBioinformaticsmedicine.disease_causechemotherapyp38 Mitogen-Activated Protein Kinases[ SDV.CAN ] Life Sciences [q-bio]/Cancerphosphatase03 medical and health sciencesmedicineAnimalsHumansGenetically modified animal[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyCell CycleCell cycleCell biologyProtein Phosphatase 2C030104 developmental biologyCell Transformation NeoplasticOncologyMutationSignal transductionTumor Suppressor Protein p53CarcinogenesisDNA DamageSignal TransductionOncotarget
researchProduct

Transcriptional Upregulation of DNA Damage Response Genes in Bank Voles (Myodes glareolus) Inhabiting the Chernobyl Exclusion Zone

2018

Exposure to ionizing radiation (IR) from radionuclides released into the environment can damage DNA. An expected response to exposure to environmental radionuclides, therefore, is initiation of DNA damage response (DDR) pathways. Increased DNA damage is a characteristic of many organisms exposed to radionuclides but expression of DDR genes of wildlife inhabiting an area contaminated by radionuclides is poorly understood. We quantified expression of five central DDR genes Atm, Mre11, p53, Brca1, and p21 in the livers of the bank vole Myodes glareolus that inhabited areas within the Chernobyl Exclusion Zone (CEZ) that differed in levels of ambient radioactivity, and also from control areas ou…

0301 basic medicinevauriotDNA damagetuhotZoologyMyodes glareolusDNA repairBiologydnamedicine.disease_causeChernobyl03 medical and health sciencesDownregulation and upregulationkorjausmedicineMre11oxidative stressExclusion zoneGeneoksidatiivinen stressichernobyllcsh:Environmental sciencesGeneral Environmental Sciencelcsh:GE1-350ionising radiationionisoiva säteilyDNAbiology.organism_classificationBank volebody regions030104 developmental biologyAtmta1181DNA damageionizing radiationOxidative stressFrontiers in Environmental Science
researchProduct