Search results for "DOTS"

showing 10 items of 181 documents

Entanglement dynamics of two independent cavity-embedded quantum dots

2010

We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …

DephasingFOS: Physical sciencesQuantum entanglementOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaOpen quantum systemsAtomic and Molecular PhysicsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spontaneous emissionMathematical PhysicsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsTime evolutionCondensed Matter PhysicsAtomic and Molecular Physics and Optics; Mathematical Physics; Condensed Matter PhysicsAtomic and Molecular Physics and OpticsMultipartite68.65.Hb Quantum dots (patterned in quantum wells)Quantum dotQubitPhysics::Accelerator Physicsand OpticsQuantum Physics (quant-ph)68.65.Hb Quantum dots (patterned in quantum wells); Open quantum systems
researchProduct

Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas

2020

We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…

Detection sensitivityMaterials sciencelcsh:BiotechnologyCesium compoundsPhysics::Optics02 engineering and technologyDielectricPerovskiteLead compoundsperovskite solar cells01 natural sciences7. Clean energyCondensed Matter::Materials Sciencenanocrystalslcsh:TP248.13-248.650103 physical sciencesEnhanced absorptionSemiconductor quantum dotsElectronic transitionGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAbsorption (electromagnetic radiation)perovskitePerovskite (structure)010302 applied physicsScatteringbusiness.industryGeneral Engineering021001 nanoscience & nanotechnologylcsh:QC1-999NanocrystalsNear field effectNanocrystalAtomic electron transitionQuantum dotOptoelectronicsTitanium dioxideAntennasDark-field scatteringsLow cost approachPhotonics0210 nano-technologybusinessOrganic moleculeslcsh:PhysicsBromine compoundsEmission enhancement
researchProduct

Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges.

2015

Hyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy. Nonetheless, different and important delivery applications of the polysaccharide have also been described, including gene …

Diagnostic ImagingCarbon nanotubes; Drug delivery; Hyaluronic acid; Intracellular delivery; Quantum dots; TheranosticsPolyestersCarbon nanotubesAcrylic ResinsPharmaceutical ScienceTumor cellsNanotechnologyPolyethylene Glycolschemistry.chemical_compoundDrug Delivery SystemsPolylactic Acid-Polyglycolic Acid CopolymerHyaluronic acidMedicineHumansLactic AcidHyaluronic Acidbusiness.industryQuantum dotsNanotubes CarbonHydrogelsGeneral MedicineIntracellular deliveryBiocompatible materialTheranosticschemistryDrug deliveryDrug deliveryNanocarriersbusinessPolyglycolic AcidBiotechnologyEuropean journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
researchProduct

Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles

2010

We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…

DispersityTexas RedBinary compoundNanotechnologychemistry.chemical_compoundAdsorptionMicroscopy Electron TransmissionQuantum DotsFluorescence Resonance Energy TransferElectrochemistryNanotechnologyMoleculeGeneral Materials ScienceColoring AgentsSpectroscopySurfaces and InterfacesSilicon DioxideCondensed Matter PhysicsAcceptorModels ChemicalSemiconductorsXantheneschemistryChemical engineeringNanocrystalSpectrophotometryNanoparticlesParticleSpectrophotometry UltravioletAdsorptionMonte Carlo MethodLangmuir
researchProduct

'Dotes', donations après rapt et donations mutuelles: les transferts patrimoniaux entre époux dans le royaume franc d'après les formules (VIe-XIe s.)

2002

F. Bougard, L. Feller et R. Le Jan; International audience

Dots et douaires[SHS.HIST] Humanities and Social Sciences/Historystratégies et transmissions patrimoniales (transferts patrimoniauxtestaments)[SHS.HIST]Humanities and Social Sciences/HistoryActeFormulaire
researchProduct

Field-induced nanolithography for high-throughput pattern transfer.

2009

Electromagnetic fieldMaterials scienceField (physics)NanotechnologyGeneral ChemistryDielectrophoresisNanostructuresBiomaterialsNanolithographyElectromagnetic FieldsQuantum dotQuantum DotsNanotechnologyGeneral Materials ScienceThroughput (business)BiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Enhancing carbon dots fluorescence via plasmonic resonance energy transfer

2022

Using plasmonic interactions to engineer optical properties at the nanoscale is an important challenge of current photonics. Here we establish a general strategy to enhance the orange emission of carbon dots by coupling them to gold nanoparticles through a polymeric spacer in solution. We exploit the overlap between the surface plasmon resonance of gold and the electronic transitions of carbon dots to achieve a fivefold increase of their fluorescence in the orange region, which is usually very weak. We demonstrate that this enhancement stems from an ultrafast resonance energy transfer from the coherent plasmonic state of the gold nanoantenna to the coupled carbon dot. Our study advances the…

Energy transferMechanics of MaterialsMechanical EngineeringSettore FIS/01 - Fisica SperimentaleGeneral Materials ScienceCarbon nanodotsPlasmonic nanoparticlesCondensed Matter PhysicsFluorescenceMaterials Research Bulletin
researchProduct

Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics

2020

Theranostic systems have attracted considerable attention for their multifunctional approach to cancer. Among these, carbon nanodots (CDs) emerged as luminescent nanomaterials due to their exceptional chemical properties, synthetic ease, biocompatibility, and for their photothermal and fluorescent properties useful in cancer photothermal therapy. However, premature renal excretion due to the small size of these particles limits their biomedical application. To overcome these limitations, here, hybrid poly(lactic-co-glycolic acid) (PLGA-CDs) nanoparticles with suitable size distribution and stability have been developed. CDs were decisive in the preparation of polymeric nanoparticles, not on…

Fluorescence-lifetime imaging microscopyphotothermal therapyBiocompatibilitylcsh:RS1-441Pharmaceutical ScienceExcipientNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleNanomaterialslcsh:Pharmacy and materia medicahybrid nanoparticleschemistry.chemical_compoundcarbon nanodotmedicinecarbon nanodotsViability assaycancer theranosticChemistryhybrid nanoparticlePLGAimagingPhotothermal therapy021001 nanoscience & nanotechnology0104 chemical sciencesPLGASettore CHIM/09 - Farmaceutico Tecnologico Applicativocancer theranostics0210 nano-technologymedicine.drugPharmaceutics
researchProduct

Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine

2019

Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, …

Fluorescence-lifetime imaging microscopyphotothermal therapyMaterials scienceCell SurvivalAntineoplastic AgentsNanotechnology02 engineering and technology010402 general chemistrytargeted cancer therapy01 natural sciencesDrug Delivery Systemsbiotincarbon nanodotCell Line TumorCarbon nanodotsHumansGeneral Materials SciencePrecision MedicineRational designimagingPhotothermal therapy021001 nanoscience & nanotechnologyCarbonNanostructures0104 chemical sciencesbiotin; carbon nanodots; imaging; photothermal therapy; targeted cancer therapy.Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiotinylationDrug deliveryCancer cellMCF-7 CellsSurface modification0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

Interaction-induced spin polarization in quantum dots.

2010

The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.

Fock-Darwin spectrumSpin polarizationSpin-density-functional theoryQuantum DotGeneral Physics and AstronomyFOS: Physical sciencesElectronSpin dynamicsShubnikov–de Haas effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electronic statesSemiconductor quantum dotsddc:530Landau levelsSpin-½PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpin polarizationCoulomb blockadeHigh magnetic fieldsLandau quantizationCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldQuantum dotMagnetic fieldsDensity functional theoryDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikInteraction effectPhysical review letters
researchProduct