Search results for "DOTS"
showing 10 items of 181 documents
Entanglement dynamics of two independent cavity-embedded quantum dots
2010
We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …
Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas
2020
We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…
Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges.
2015
Hyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy. Nonetheless, different and important delivery applications of the polysaccharide have also been described, including gene …
Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles
2010
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…
'Dotes', donations après rapt et donations mutuelles: les transferts patrimoniaux entre époux dans le royaume franc d'après les formules (VIe-XIe s.)
2002
F. Bougard, L. Feller et R. Le Jan; International audience
Field-induced nanolithography for high-throughput pattern transfer.
2009
Enhancing carbon dots fluorescence via plasmonic resonance energy transfer
2022
Using plasmonic interactions to engineer optical properties at the nanoscale is an important challenge of current photonics. Here we establish a general strategy to enhance the orange emission of carbon dots by coupling them to gold nanoparticles through a polymeric spacer in solution. We exploit the overlap between the surface plasmon resonance of gold and the electronic transitions of carbon dots to achieve a fivefold increase of their fluorescence in the orange region, which is usually very weak. We demonstrate that this enhancement stems from an ultrafast resonance energy transfer from the coherent plasmonic state of the gold nanoantenna to the coupled carbon dot. Our study advances the…
Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics
2020
Theranostic systems have attracted considerable attention for their multifunctional approach to cancer. Among these, carbon nanodots (CDs) emerged as luminescent nanomaterials due to their exceptional chemical properties, synthetic ease, biocompatibility, and for their photothermal and fluorescent properties useful in cancer photothermal therapy. However, premature renal excretion due to the small size of these particles limits their biomedical application. To overcome these limitations, here, hybrid poly(lactic-co-glycolic acid) (PLGA-CDs) nanoparticles with suitable size distribution and stability have been developed. CDs were decisive in the preparation of polymeric nanoparticles, not on…
Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine
2019
Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, …
Interaction-induced spin polarization in quantum dots.
2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.