Search results for "DRUG DISCOVERY"

showing 10 items of 3927 documents

Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests

2020

On the basis of the side effects of detrimental synthetic chemicals, introducing healthy, available, and effective bioagents for pest management is critical. Due to this circumstance, several studies have been conducted that evaluate the pesticidal potency of plant-derived essential oils. This review presents the pesticidal efficiency of essential oils isolated from different genera of the Lamiaceae family including Agastache Gronovius, Hyptis Jacquin, Lavandula L., Lepechinia Willdenow, Mentha L., Melissa L., Ocimum L., Origanum L., Perilla L., Perovskia Kar., Phlomis L., Rosmarinus L., Salvia L., Satureja L., Teucrium L., Thymus L., Zataria Boissier, and Zhumeria Rech. Along with acute to…

0106 biological sciencesfood.ingredientHyptisLavandulaPhytochemicalsPharmaceutical ScienceReviewacute toxicitysublethal effectsSatureja01 natural sciencesRosmarinusessential oilAnalytical Chemistrylaw.inventionTeucriumlcsh:QD241-441foodlcsh:Organic chemistrylawDrug DiscoveryOils Volatilesublethal effectPesticidesPhysical and Theoretical ChemistrymonoterpenoidsEssential oilLamiaceaeMolecular StructurebiologyTraditional medicineOrganic ChemistryOriganumbiology.organism_classification010602 entomologyChemistry (miscellaneous)Insect RepellentsSettore BIO/03 - Botanica Ambientale E ApplicataMolecular MedicineLamiaceae010606 plant biology & botanyMolecules
researchProduct

Spray-Drying Performance and Thermal Stability of L-Ascorbic Acid Microencapsulated with Sodium Alginate and Gum Arabic

2019

[EN] The potential of sodium alginate (ALG) and gum arabic (GA) as wall polymers for Lascorbic acid (AA) encapsulation as a tool for their preservation against the thermo-oxidative degradation was investigated. The influence of such polymers used as wall material on the AAcontent, size, encapsulation efficiency, encapsulation yield and thermo-oxidative stability were evaluated. The AA-microparticles were obtained using the spray-drying technique. An experimental Taguchi design was employed to assess the influence of the variables in the encapsulation process. The microparticles morphology and size distribution were characterized by scanning electron microscopy and laser diffraction. The the…

0106 biological sciencesfood.ingredientMaterials scienceChemical PhenomenaScanning electron microscopeAlginatesDrug Compoundinggum arabicPharmaceutical ScienceAscorbic AcidL-ascorbic acid01 natural sciencesArticleAnalytical Chemistrysodium alginatelcsh:QD241-4410404 agricultural biotechnologyfoodDifferential scanning calorimetryDrug Stabilitylcsh:Organic chemistry010608 biotechnologyDrug DiscoveryThermal stabilityspray-dryingPhysical and Theoretical ChemistryParticle Sizechemistry.chemical_classificationAnalysis of VarianceMolecular StructurenanotechnologySpectrum AnalysisOrganic ChemistryTemperature04 agricultural and veterinary sciencesPolymerAscorbic acid040401 food scienceThermogravimetrychemistryChemical engineeringChemistry (miscellaneous)Spray dryingMAQUINAS Y MOTORES TERMICOSMolecular MedicineGum arabicencapsulation
researchProduct

Synthesis and Cytotoxicity of 1,4-Dihydropyridines and an Unexpected 1,3-Oxazin-6-one

2016

Eight heterocycles have been prepared in a one-pot reaction manner based on the Hantzsch dihydropyridine synthesis. The synthesis afforded seven dihydropyridines (DHP) and one unexpected 1,3-oxazin-6-one. Their structures were confirmed based on NMR spectroscopy and mass spectrometry. The obtained products have been evaluated for their cytotoxicity against eight cancer cell lines and one normal cell line. Two halogenated DHPs (7 and 8) displayed cytotoxicity toward all the nine tested cancer cell lines with IC50 values from 4.10 to 58.90 μm, while others showed selective activities. DHPs (7 and 8) bearing a Me group at C(2) and C(6) as well as a halogenated substituent at C(4′) were more an…

0301 basic medicine010405 organic chemistryStereochemistryChemistryOrganic ChemistrySubstituentDihydropyridineDHPSNuclear magnetic resonance spectroscopy01 natural sciencesBiochemistryCatalysis0104 chemical sciencesInorganic ChemistryNormal cell03 medical and health scienceschemistry.chemical_compound030104 developmental biologyDrug DiscoveryIc50 valuesmedicinePhysical and Theoretical ChemistryCancer cell linesCytotoxicitymedicine.drugHelvetica Chimica Acta
researchProduct

Investigation of Isoindolo[2,1-a] quinoxaline-6-imines as Topoisomerase I Inhibitors with Molecular Modeling Methods

2017

Background: Isoindolo[2,1-alpha] quinoxalines constitute an important class of compounds which demonstrated potent antiproliferative activity against different human tumor cell lines and topoisomerase I inhibitors. In particular, their water soluble imine or iminium salts recently synthesized showed potent growth inhibitory effect on NCI-60 tumor cell line panel and biological studies performed on the most active compounds demonstrated that they cause DNA damage via topoisomerase I poisoning. Objective: Herein, we investigate with molecular modeling methods, the common features responsible for topoisomerase I inhibition of the water-soluble isoindolo[2,1-alpha] quinoxalin-6-imines, by compa…

0301 basic medicine030103 biophysicsMolecular modelStereochemistryDNA damageAntineoplastic AgentsIsoindolesTopoisomerase-I InhibitorCrystallography X-RayaromatechinStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundQuinoxalinetopotecanantiproliferativeCell Line TumorNeoplasmsQuinoxalinesquinoxalineDrug DiscoveryHumansCell Proliferationbiologypharmacophore modelTopoisomeraseIminiumGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaMolecular Docking SimulationTopoisomerase IindenoisoquinolineDNA Topoisomerases Type IchemistryDocking (molecular)dockingbiology.proteinMolecular MedicineTopoisomerase I; quinoxaline; antiproliferative; topotecan; aromatechin; indenoisoquinoline; docking; pharmacophore modelIminesTopoisomerase I InhibitorsPharmacophore
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression.

2018

Abstract Background: A strong, reciprocal crosstalk between inflammation and melanoma has rigorously been demonstrated in recent years, showing how crucial is a pro-inflammatory microenvironment to drive therapy resistance and metastasis. Purpose: We investigated on the effects of Indicaxanthin, a novel, anti-inflammatory and bioavailable phytochemical from Opuntia Ficus Indica fruits, against human melanoma both in vitro and in vivo. Study Design and Methods: The effects of indicaxanthin were evaluated against the proliferation of A375 human melanoma cell line and in a mice model of cutaneous melanoma. Cell proliferation was assessed by MTT assay, apoptosis by Annexin V-Fluorescein Isothio…

0301 basic medicine3003MaleSkin NeoplasmsPyridinesPyridinePhytochemicalsMelanoma ExperimentalPharmaceutical ScienceIndicaxanthinApoptosisBcl-2 B cell lymphoma gene-2 (Bcl-2)chemistry.chemical_compoundMice0302 clinical medicineOpuntia Ficus Indica (L.Mill)Settore BIO/10 - BiochimicaDrug DiscoveryCXCL1 chemokine (C-X-C motif) ligand 1MelanomaNF-κB nuclear factor kappa BMTT 3-[45-dimethyltiazol-2-yl]-25-diphenyl tetrazolium bromideMelanomaNF-kappa BOpuntiaComplementary and Alternative Medicine2708 DermatologyBetaxanthinsCXCL1030220 oncology & carcinogenesisMolecular MedicinePhC phytochemicalGrowth inhibitionIndicaxanthinHumanBiologyPhytochemicalNHEM normal human epidermal melanocyte03 medical and health sciencesc-FLIP FLICE-inhibitory proteinIn vivoCell Line TumormedicineAnimalsHumansNeoplasm InvasivenessSkin NeoplasmCell ProliferationNeoplasm InvasiveneInflammationPharmacologyCell growthAnimalDrug Discovery3003 Pharmaceutical ScienceApoptosimedicine.diseaseMice Inbred C57BL030104 developmental biologyComplementary and alternative medicinechemistryTumor progressionList of Abbrevations: AxV-FITC annexin V-fluorescein isothiocyanateBetaxanthinFruitCutaneous melanomaCancer researchPI propidium iodide PIPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds

2017

The synthesis, the antitumor activity, the SAR and, whenever described, the possible mode of action of 1,2,4-triazine derivatives, their N-oxides, N,. N'-dioxides as well as the benzo- and hetero-fused systems are reported. Herein are treated derivatives disclosed to literature from the beginning of this century up to 2016. Among the three possible triazine isomers, 1,2,4-triazines are the most studied ones and many derivatives having remarkable antitumor activity have been reported in the literature and also patented reaching advanced phases of clinical trials.

0301 basic medicine4-benzotriazine124-triazineAntineoplastic AgentsChemistry Techniques SyntheticAntiproliferative activity01 natural sciences03 medical and health scienceschemistry.chemical_compoundNeoplasmsDrug DiscoveryOrganic chemistryAnimalsHumans124-triazineMode of action124-benzotriazineTriazineAntitumor activityPharmacology010405 organic chemistryChemistryTriazinesNitrogen heterocyclesDrug Discovery3003 Pharmaceutical Science1; 2; 4-benzotriazine; 1; 2; 4-triazine; Antiproliferative activity; Antitumor activity; Nitrogen heterocycles; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryOrganic ChemistryGeneral MedicineCombinatorial chemistrySettore CHIM/08 - Chimica Farmaceutica0104 chemical sciences030104 developmental biologyNitrogen heterocycleDrug Screening Assays AntitumorAntitumor activity
researchProduct

Epimagnolin A, a tetrahydrofurofuranoid lignan from Magnolia fargesii, reverses ABCB1-mediated drug resistance.

2018

Abstract Background Epimagnolin A is an ingredient of the Chinese crude drug Shin-i, derived from the dried flower buds of Magnolia fargesii and Magnolia flos, which has been traditionally used for the treatment of allergic rhinitis and nasal congestion, empyema, and sinusitis. The pharmacokinetic activity of epimagnolin A remains to be evaluated. Purpose In this study, we examined the possible interactions of epimagnolin A with human ATP-binding cassette (ABC) transporter ABCB1, a membrane protein vital in regulating the pharmacokinetics of drugs and xenobiotics. Study design/methods The interaction of epimagnolin A with ABCB1 was evaluated in calcein, ATPase, and MTT assays by using Flp-I…

0301 basic medicineATP Binding Cassette Transporter Subfamily BATPasePharmaceutical ScienceATP-binding cassette transporterPharmacologyCrude drugLignans03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePharmacokineticsCell Line TumorDrug DiscoverymedicineHumansEnzyme kineticsP-glycoproteinPharmacologyAdenosine TriphosphatasesbiologyAntineoplastic Agents PhytogenicDrug Resistance MultipleCalceinMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicinechemistryVerapamilDrug Resistance NeoplasmMagnolia030220 oncology & carcinogenesisbiology.proteinMolecular MedicineVerapamilmedicine.drugPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

γδ cell-based immunotherapy for cancer.

2019

Introduction: Cancer immunotherapy relies on the development of an efficient and long-lasting anti-tumor response, generally mediated by cytotoxic T cells. gamma delta T cells possess distinctive features that justify their use in cancer immunotherapy. Areas covered: Here we will review our current knowledge on the functions of human gamma delta T cells that may be relevant in tumor immunity and the most recent advances in our understanding of how these functions are regulated in the tumor microenvironment. We will also discuss the major achievements and limitations of gamma delta T cell-based immunotherapy of cancer. Expert opinion: Several small-scale clinical trials have been conducted i…

0301 basic medicineAdoptive cell transfergamma delta T celladoptive transfermedicine.medical_treatmentT cellClinical BiochemistryImmunotherapy Adoptive03 medical and health sciences0302 clinical medicineCancer immunotherapyNeoplasmsDrug DiscoveryAnimalsHumansMedicineCytotoxic T cellcancertumor microenvironmentIntraepithelial LymphocytesPharmacologyTumor microenvironmentbusiness.industryCancerImmunotherapymedicine.diseaseClinical trial030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisCancer researchcytotoxicitybusiness
researchProduct

Epithelial-mesenchymal transition: a new target in anticancer drug discovery

2016

The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification o…

0301 basic medicineAdultEpithelial-Mesenchymal TransitionCellPopulationAntineoplastic AgentsPharmacologyBiology03 medical and health sciences0302 clinical medicineSettore MED/04 - PATOLOGIA GENERALENeoplasmsDrug DiscoverymedicineHumanscancerEpithelial–mesenchymal transitioneducationAdult; Antineoplastic Agents; Epithelial-Mesenchymal Transition; Humans; Neoplasms; Drug Discovery; Pharmacology; Drug Discovery3003 Pharmaceutical SciencePharmacologyeducation.field_of_studyTransition (genetics)Drug discoveryDrug Discovery3003 Pharmaceutical ScienceGeneral MedicineAnticancer drugEMT target therapy chemoresistance030104 developmental biologymedicine.anatomical_structureDrug developmentApoptosis030220 oncology & carcinogenesisCancer research
researchProduct