Search results for "DRUG REPOSITIONING"
showing 10 items of 26 documents
Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.
2018
Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei (T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors (Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys–SOH) during crystallization. The P-glycoprotein efflux ratio was mea…
Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
2018
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This netw…
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
2021
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…
Repurposing old drugs to fight multidrug resistant cancers.
2020
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approa…
Novel activities of safe-in-human broad-spectrum antiviral agents
2018
According to the WHO, there is an urgent need for better control of viral diseases. Re-positioning existing safe-in-human antiviral agents from one viral disease to another could play a pivotal role in this process. Here, we reviewed all approved, investigational and experimental antiviral agents, which are safe in man, and identified 59 compounds that target at least three viral diseases. We tested 55 of these compounds against eight different RNA and DNA viruses. We found novel activities for dalbavancin against echovirus 1, ezetimibe against human immunodeficiency virus 1 and Zika virus, as well as azacitidine, cyclosporine, minocycline, oritavancin and ritonavir against Rift valley feve…
Identification of Novel Anthracycline Resistance Genes and Their Inhibitors
2021
Differentially expressed genes have been previously identified by us in multidrug-resistant tumor cells mainly resistant to doxorubicin. In the present study, we exemplarily focused on some of these genes to investigate their causative relationship with drug resistance. HMOX1, NEIL2, and PRKCA were overexpressed by lentiviral-plasmid-based transfection of HEK293 cells. An in silico drug repurposing approach was applied using virtual screening and molecular docking of FDA-approved drugs to identify inhibitors of these new drug-resistant genes. Overexpression of the selected genes conferred resistance to doxorubicin and daunorubicin but not to vincristine, docetaxel, and cisplatin, indicating…
Multivariate analysis in the identification of biological targets for designed molecular structures: The BIOTA protocol
2013
In this work the new protocol BIOlogical Target Assignation (BIOTA) for the prediction of the biological target from molecular structures is proposed. BIOTA is based on the Principal Components Analysis (PCA) application on a matrix of ligands versus molecular descriptors. The application of BIOTA could allow to hypothesize the mechanism of action of a candidate drug prior to its biological evaluation or to repurpose old drugs. The protocol can be fine-tuned by choosing opportune targets (biological or not) and molecular descriptors, and it can be useful in every fields in with it is possible to collect set of compounds with known properties. The robustness of the protocol depends from diff…
The In Silico Fischer Lock-and-Key Model: The Combined Use of Molecular Descriptors and Docking Poses for the Repurposing of Old Drugs
2019
Not always lead compound and/or derivatives are suitable for the specific biological target for which they are designed but, in some cases, discarded compounds proved to be good binders for other biological targets; therefore, drug repurposing constitute a valid alternative to avoid waste of human and financial resources. Our virtual lock-and-key methods, VLKA and Conf-VLKA, furnish a strong support to predict the efficacy of a designed drug a priori its biological evaluation, or the correct biological target for a set of the selected compounds, allowing thus the repurposing of known and unknown, active and inactive compounds.
Identification of chemosensitizers by drug repurposing to enhance the efficacy of cancer therapy
2020
Abstract The progressively rising drug resistance has driven the development of chemosensitizers, which aim to enhance the current chemotherapeutic efficacy through either quantitatively increasing intracellular drug concentration by inhibiting drug efflux, vesicle sequestration, and metabolic inactivation or qualitatively exerting concomitant effects on cellular regulation to promote apoptosis. Given the high failure rates and costs during standard drug development, drug repurposing represents an effective and economic approach for chemosensitizer identification. By applying drug repurposing, a wide range of existing clinic drugs including anticardiovascular agents, immunosuppressants, ant…
Disparity between Inter-Patient Molecular Heterogeneity and Repertoires of Target Drugs Used for Different Types of Cancer in Clinical Oncology
2020
Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guideli…